Решена одна давняя проблема замыкаемости форм Дирихле. Получены условия слабой сходимости конечномерных распределений сингулярных диффузионных процессов в терминах порожденных ими форм Дирихле. Доказана плотность емкостей, порожденных классами Соболева различных порядков в локально выпуклых пространствах, а также в пространствах конфигураций. В этих пространствах построены и изучены поверхностные меры на множествах уровня соболевских функций. В работе применяются методы теории бесконечномерных вероятностных распределений и функционального анализа; используется ряд оригинальных конструкций автора. Работа носит теоретический характер. Ее методы и результаты могут быть использованы в теории случайных процессов, теории дифференциальных уравнений с частными производными на бесконечномерных пространствах, математической физике, геометрической теории меры. Для студентов старших курсов, аспирантов и преподавателей высших учебных заведений с углубленным изучением математики.