Magnetic Nanoparticles in Human Health and Medicine. Группа авторовЧитать онлайн книгу.
S., Miyajima, D., Niwa, T. et al. (2015). Tailoring micrometer‐long high‐integrity 1D array of superparamagnetic nanoparticles in a nanotubular protein jacket and its lateral magnetic assembling behavior. Journal of the American Chemical Society 137 (14): 4658–4661.
96 Singamaneni, S. and Bliznyuk, V. (2005). ‘Fabrication of Ni nanoparticles and their size‐selective self‐assembly into chains under external magnetic field. Applied Physics Letters 87 (16): 162511.
97 Smith, C.E., Ernenwein, D., Shkumatov, A. et al. (2015). Hydrophilic packaging of iron oxide nanoclusters for highly sensitive imaging. Biomaterials 69: 184–190.
98 Steiner, T. (2002). The hydrogen bond in the solid state. Angewandte Chemie International Edition 41 (1): 48–76.
99 Stolarczyk, J.K., Deak, A., and Brougham, D.F. (2016). Nanoparticle clusters: assembly and `control over internal order, current capabilities, and future potential. Advanced Materials 28 (27): 5400–5424.
100 Sun, Z., Ni, W., Yang, Z. et al. (2008). pH‐controlled reversible assembly and disassembly of gold nanorods. Small 4 (9): 1287–1292.
101 Taboada, E., Solanas, R., Rodriguez, E. et al. (2009). Supercritical‐fluid‐assisted one‐pot synthesis of biocompatible core(gamma‐Fe2O3)/shell(SiO2) nanoparticles as high relaxivity T‐2‐contrast agents for magnetic resonance imaging. Advanced Functional Materials 19 (14): 2319–2324.
102 Tanase, M., Bauer, L.A., Hultgren, A. et al. (2001). Magnetic alignment of fluorescent nanowires. Nano Letters 1 (3): 155–158.
103 Tanase, M., Felton, E.J., Gray, D.S. et al. (2005). Assembly of multicellular constructs and microarrays of cells using magnetic nanowires. Lab on a Chip 5 (6): 598–605.
104 Thomas, K.G., Barazzouk, S., Ipe, B.I. et al. (2004). Uniaxial plasmon coupling through longitudinal self‐assembly of gold nanorods. The Journal of Physical Chemistry B 108 (35): 13066–13068.
105 Tran, M.V., Susumu, K., Medintz, I.L., and Algar, W.R. (2019). Supraparticle assemblies of magnetic nanoparticles and quantum dots for selective cell isolation and counting on a smartphone‐based imaging platform. Analytical Chemistry 91 (18): 11963–11971.
106 Tregubov, A.A., Sokolov, I.L., Babenyshev, A.V. et al. (2018). Magnetic hybrid magnetite/metal organic framework nanoparticles: facile preparation, post‐synthetic biofunctionalization and tracking in vivo with magnetic methods. Journal of Magnetism and Magnetic Materials 449: 590–596.
107 Tripp, S.L., Pusztay, S.V., Ribbe, A.E., and Wei, A. (2002). Self‐assembly of cobalt nanoparticle rings. Journal of the American Chemical Society 124 (27): 7914–7915.
108 Tripp, S.L., Dunin‐Borkowski, R.E., and Wei, A. (2003). Flux closure in self‐assembled cobalt nanoparticle rings. Angewandte Chemie International Edition 42 (45): 5591–5593.
109 Vishwasrao, H.M., Master, A.M., Seo, Y.G. et al. (2016). Luteinizing hormone releasing hormone‐targeted cisplatin‐loaded magnetite nanoclusters for simultaneous MR imaging and chemotherapy of ovarian cancer. Chemistry of Materials 28 (9): 3024–3040.
110 Wang, W., Tang, B., Ju, B., and Zhang, S. (2015). Size‐controlled synthesis of water‐dispersible superparamagnetic Fe3O4 nanoclusters and their magnetic responsiveness. RSC Advances 5 (92): 75292–75299.
111 Wang, S., Yin, Y., Song, W. et al. (2020). Red‐blood‐cell‐membrane‐enveloped magnetic nanoclusters as a biomimetic theranostic nanoplatform for bimodal imaging‐guided cancer photothermal therapy. Journal of Materials Chemistry B 8 (4): 803–812.
112 Weller, D. and Doerner, M.F. (2000). Extremely high‐density longitudinal magnetic recording media. Annual Review of Materials Science 30 (1): 611–644.
113 Whitesides, G.M. and Grzybowski, B. (2002). Self‐assembly at all scales. Science 295 (5564): 2418.
114 Wu, M.‐z., Quan, G.‐y., Liu, Y.‐m. et al. (2009). Comparative study of one‐dimensional NiCo alloy nanostructures assembled by in situ and ex situ applied magnetic fields. Transactions of Nonferrous Metals Society of China 19 (6): 1562–1566.
115 Wu, C.‐H., Cook, J., Emelianov, S., and Sokolov, K. (2014). Multimodal magneto‐plasmonic nanoclusters for biomedical applications. Advanced Functional Materials 24 (43): 6862–6871.
116 Wu, C., Xu, Y., Yang, L. et al. (2015a). Negatively charged magnetite nanoparticle clusters as efficient MRI probes for dendritic cell labeling and in vivo rracking. Advanced Functional Materials 25 (23): 3581–3591.
117 Wu, M., Zhang, D., Zeng, Y. et al. (2015b). Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly(dopamine) for magnetic field‐targeting, highly sensitive MRI and photothermal cancer therapy. Nanotechnology 26 (11): 115102.
118 Xia, Y., Nguyen, T.D., Yang, M. et al. (2012). Self‐assembly of self‐limiting monodisperse supraparticles from polydisperse nanoparticles. Nature Nanotechnology 7 (7): 479–479.
119 Yan, H., Park, S.H., Finkelstein, G. et al. (2003). DNA‐templated self‐assembly of protein arrays and highly conductive nanowires. Science 301 (5641): 1882.
120 Yang, H.Y., Fu, Y., Li, Y. et al. (2018). Polymer ligand‐assisted fabrication of multifunctional and redox‐responsive self‐assembled magnetic nanoclusters for bimodal imaging and cancer treatment. Journal of Materials Chemistry B 6 (35): 5562–5569.
121 Yue, M., Li, Y., Hou, Y. et al. (2015). Hydrogen bonding stabilized self‐assembly of inorganic nanoparticles: mechanism and collective properties. ACS Nano 9 (6): 5807–5817.
122 Zeng, H., Li, J., Liu, J.P. et al. (2002). Exchange‐coupled nanocomposite magnets by nanoparticle self‐assembly. Nature 420 (6914): 395–398.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.