Nanotechnology in Medicine. Группа авторовЧитать онлайн книгу.
system. Nanotoxicology 14 (1): 21–58. https://doi.org/10.1080/17435390.2019.1661043.
49 Parappurath, N., Kirubanandam, S., Kumar, V., and Ahmed, B. (2018). Nanomaterials history, classification, unique properties, production and market. In: Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends (eds. M. ASH and A. Barhoum), 341–384. United Kingdom: Elsevier.
50 Paris, J. and Vallet‐Regí, M. (2020). Mesoporous silica nanoparticles for co‐delivery of drugs and nucleic acids in oncology: a review. Pharmaceutics 12 (6) https://doi.org/10.3390/pharmaceutics12060526.
51 Park, K. (2019a). The beginning of the end of the nanomedicine hype. Journal of Controlled Release 305: 221–222. https://doi.org/10.1016/j.jconrel.2019.05.044.
52 Park, K. (2019b). Transcending nanomedicine to the next level: are we there yet? Journal of Controlled Release 298: 213. https://doi.org/10.1016/j.jconrel.2019.02.040.
53 Patra, J., Das, G., Fraceto, L. et al. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology 16 (1): 1–33. https://doi.org/10.1186/s12951‐018‐0392‐8.
54 Pelaz, B., Alexiou, C., Alvarez‐Puebla, R. et al. (2017). Diverse applications of nanomedicine. ACS Nano 11 (3): 2313–2381. https://doi.org/10.1021/acsnano.6b06040.
55 Pellico, J., Ellis, C., and Davis, J. (2019). Nanoparticle‐based paramagnetic contrast agents for magnetic resonance imaging. Contrast Media & Molecular Imaging 2019: 1–13. https://doi.org/10.1155/2019/1845637.
56 Pratiwi, F., Kuo, C., Chen, B., and Chen, P. (2019). Recent advances in the use of fluorescent nanoparticles for bioimaging. Nanomedicine (London) 14 (13): 1759–1769. https://doi.org/10.2217/nnm‐2019‐0105.
57 Rahman, M., Ahmad, M., Kazmi, I. et al. (2012). Advancement in multifunctional nanoparticles for the effective treatment of cancer. Expert Opinion on Drug Delivery 9 (4): 367–381. https://doi.org/10.1517/17425247.2012.668522.
58 Sangtani, A., Nag, O., Field, L. et al. (2017). Multifunctional nanoparticle composites: progress in the use of soft and hard nanoparticles for drug delivery and imaging. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology 9 (6) https://doi.org/10.1002/wnan.1466.
59 SCENIHR (2006). Modified opinion (after public consultation) on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies (SCENIHR/002/05). https://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_003b.pdf
60 Sharma, D., Sharma, N., Pathak, M. et al. (2018). Nanotechnology‐based drug delivery systems. In: Drug Targeting and Stimuli Sensitive Drug Delivery Systems (ed. A.M. Grumezescu), 39–79. New York: William Andrew Publishing.
61 Shidhaye, S., Vaidya, R., Sutar, S. et al. (2008). Solid lipid nanoparticles and nanostructured lipid carriers‐‐innovative generations of solid lipid carriers. Current Drug Delivery 5 (4): 324–331. https://doi.org/10.2174/156720108785915087.
62 Shubhika, K. (2013). Nanotechnology and medicine – the upside and the downside. International Journal of Drug Development and Research 5 (1): 1–10.
63 Singh, A., Laux, P., Luch, A. et al. (2019). Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design. Toxicology Mechanisms and Methods 29 (5): 378–387. https://doi.org/10.1080/15376516.2019.1566425.
64 Sukhanova, A., Bozrova, S., Sokolov, P. et al. (2018). Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Research Letters 13 (1): 1–21. https://doi.org/10.1186/s11671‐018‐2457‐x.
65 Teleanu, D., Negut, I., Grumezescu, V. et al. (2019). Nanomaterials for drug delivery to the central nervous system. Nanomaterials (Basel) 9 (3): 1–18. https://doi.org/10.3390/nano9030371.
66 Trotta, F. and Mele, A. (2019). Nanomaterials: Classification and Properties, 1e. Germany: Wiley‐VCHVerlag GmbH& Co. KGaA.
67 Utreja, P., Verma, S., Rahman, M., and Kumar, L. (2020). Use of nanoparticles in medicine. Current Biochemical Engineering 6 (1): 7–24. https://doi.org/10.2174/2212711906666190724145101.
68 Vanza, J., Patel, R., and Patel, M. (2020). Nanocarrier centered therapeutic approaches: recent developments with insight towards the future in the management of lung cancer. Journal of Drug Delivery Science and Technology 60: 1–22. https://doi.org/10.1016/j.jddst.2020.102070.
69 Ventola, C. (2017). Progress in nanomedicine: approved and investigational nanodrugs. Pharmacy and Therapeutics (P&T) 42 (12): 743–755.
70 Viswanath, B. and Kim, S. (2016). Influence of Nanotoxicity on Human Health and Environment: The Alternative Strategies, 2016/10/09e, vol. 242. Cham, Switzerland: Springer.
71 Warheit, D. and Sayes, C. (2015). Routes of exposure to nanoparticles: hazard tests related to portal entries. In: Nanoengineering (ed. P. Dolez), 41–54. United Kingdom: Elsevier.
72 Wibowo, D., Jorritsma, S., Gonzaga, Z.J. et al. (2020). Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials 268: 120597. https://doi.org/10.1016/j.biomaterials.2020.120597.
73 Wolfram, J., Zhu, M., Yang, Y. et al. (2015). Safety of nanoparticles in medicine. Current Drug Targets 16 (14): 1671–1681. https://doi.org/10.2174/1389450115666140804124808.
74 Wu, L., Wang, D., and Li, Z. (2020). Grand challenges in nanomedicine. Materials Science and Engineering C 106: 1–7. https://doi.org/10.1016/j.msec.2019.110302.
75 Zeb, A., Rana, I., Choi, H.I. et al. (2020). Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals. Pharmaceutics 12 (12): 1184. https://doi.org/10.3390/pharmaceutics12121184.
76 Zhao, J. and Castranova, V. (2011). Toxicology of nanomaterials used in nanomedicine. Journal of Toxicology and Environmental Health, Part B Critical Reviews 14 (8): 593–632. https://doi.org/10.1080/10937404.2011.615113.
2 Microbial Biopolymers and Their Derivatives as Nanotechnological Tools for Medicine: Applications, Advantages, Toxicity, and Safety
Paulo Ricardo Franco Marcelino, Fernanda Gonçalves, Nayelen Sayuri Aizawa, Henrique Paiva Pereira, Talita Martins Lacerda, and Silvio Silvério da Silva
Department of Biotechnology, Engineering School of Lorena