Microbial Interactions at Nanobiotechnology Interfaces. Группа авторовЧитать онлайн книгу.
nanomaterials for antimicrobial applications. In A. Barhoum & A. S. H. Makhlouf (Eds.), Fundamentals of Nanoparticles (pp. 71–104). Elsevier.
43 Gilbertson, L. M., Albalghiti, E. M., Fishman, Z. S., Perreault, F. O., Corredor, C., Posner, J. D., … Zimmerman, J. B. (2016). Shape‐dependent surface reactivity and antimicrobial activity of nano‐cupric oxide. Environmental Science & Technology, 50(7), 3975–3984.
44 Gleiter, H. (2000). Nanostructured materials: Basic concepts and microstructure. Acta Materialia, 48(1), 1–29.
45 Goenka, S., Sant, V., & Sant, S. (2014). Graphene‐based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release, 173, 75–88.
46 Gupta, A., Landis, R. F., & Rotello, V. M. (2016). Nanoparticle‐based antimicrobials: Surface functionality is critical. F1000Research, 5. doi:10.12688/f1000research.7595.1
47 Gupta, A., Mumtaz, S., Li, C.‐H., Hussain, I., & Rotello, V. M. (2019). Combatting antibiotic‐resistant bacteria using nanomaterials. Chemical Society Reviews, 48(2), 415–427.
48 Gurunathan, S., Han, J. W., Kwon, D.‐N., & Kim, J.‐H. (2014). Enhanced antibacterial and anti‐biofilm activities of silver nanoparticles against Gram‐negative and Gram‐positive bacteria. Nanoscale Research Letters, 9(1), 373.
49 Hadinoto, K., Sundaresan, A., & Cheow, W. S. (2013). Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 427–443.
50 Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., de Aberasturi, D. J., de Larramendi, I. R., Rojo, T., … Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511.
51 Hayden, S. C., Zhao, G., Saha, K., Phillips, R. L., Li, X., Miranda, O. R., … Bunz, U. H. (2012). Aggregation and interaction of cationic nanoparticles on bacterial surfaces. Journal of the American Chemical Society, 134(16), 6920–6923.
52 He, C., Hu, Y., Yin, L., Tang, C., & Yin, C. (2010). Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 31(13), 3657–3666.
53 Hochella, M. F., Spencer, M. G., & Jones, K. L. (2015). Nanotechnology: Nature's gift or scientists' brainchild? Environmental Science: Nano, 2(2), 114–119.
54 Hong, X., Wen, J., Xiong, X., & Hu, Y. (2016). Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave‐assisted method. Environmental Science and Pollution Research, 23(5), 4489–4497.
55 Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128–145.
56 Jacoby, W. A., Maness, P. C., Wolfrum, E. J., Blake, D. M., & Fennell, J. A. (1998). Mineralization of bacterial cell mass on a photocatalytic surface in air. Environmental Science & Technology, 32(17), 2650–2653.
57 Jagadeeshan, S., & Parsanathan, R. (2019). Nano‐metal oxides for antibacterial activity. In M. Naushad, S. Rajendran, & F. Gracia (Eds.), Advanced Nanostructured Materials for Environmental Remediation (pp. 59–90). Springer.
58 Jaiswal, S., & Mishra, P. (2018). Antimicrobial and antibiofilm activity of curcumin‐silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Medical Microbiology and Immunology, 207(1), 39–53.
59 Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9(1), 1050–1074.
60 Kang, S., Herzberg, M., Rodrigues, D. F., & Elimelech, M. (2008). Antibacterial effects of carbon nanotubes: Size does matter! Langmuir, 24(13), 6409–6413.
61 Kaufman, E. D., Belyea, J., Johnson, M. C., Nicholson, Z. M., Ricks, J. L., Shah, P. K., … Blomberg, E. (2007). Probing protein adsorption onto mercaptoundecanoic acid stabilized gold nanoparticles and surfaces by quartz crystal microbalance and ζ‐potential measurements. Langmuir, 23(11), 6053–6062.
62 Kaur, P., & Peterson, E. (2018). Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in Microbiology, 9, 2928.
63 Khameneh, B., Diab, R., Ghazvini, K., & Bazzaz, B. S. F. (2016). Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microbial Pathogenesis, 95, 32–42.
64 Khan, M. F., Ansari, A. H., Hameedullah, M., Ahmad, E., Husain, F. M., Zia, Q., …Khan, A. M. (2016). Sol‐gel synthesis of thorn‐like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano‐antibiotics. Scientific Reports, 6, 27689.
65 Kim, J. S., Kuk, E., Yu, K. N., Kim, J.‐H., Park, S. J., Lee, H. J., … Hwang, C.‐Y. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95–101.
66 Knopp, D., Tang, D., & Niessner, R. (2009). Bioanalytical applications of biomolecule‐functionalized nanometer‐sized doped silica particles. Analytica Chimica Acta, 647(1), 14–30.
67 Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., & Dai, H. (2000). Nanotube molecular wires as chemical sensors. Science, 287(5453), 622–625.
68 Kühn, K. P., Chaberny, I. F., Massholder, K., Stickler, M., Benz, V. W., Sonntag, H.‐G., & Erdinger, L. (2003). Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light. Chemosphere, 53(1), 71–77.
69 Le, A.‐T., Tam, P. D., Huy, P., Huy, T. Q., Van Hieu, N., Kudrinskiy, A., & Krutyakov, Y. A. (2010). Synthesis of oleic acid‐stabilized silver nanoparticles and analysis of their antibacterial activity. Materials Science and Engineering C, 30(6), 910–916.
70 Lee, A., Mao, W., Warren, M. S., Mistry, A., Hoshino, K., Okumura, R., … Lomovskaya, O. (2000). Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. Journal of Bacteriology, 182(11), 3142–3150.
71 Lee, W., Kang, S. H., Kim, J.‐Y., Kolekar, G. B., Sung, Y.‐E., & Han, S.‐H. (2009). TiO2 nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum‐dot‐sensitized solar cells. Nanotechnology, 20(33), 335706.
72 Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371.
73 Li, C., Fu, R., Yu, C., Li, Z., Guan, H., Hu, D., … Lu, L. (2013). Silver nanoparticle/chitosan oligosaccharide/poly (vinyl alcohol) nanofibers as wound dressings: A preclinical study. International Journal of Nanomedicine, 8, 4131.
74 Li, H., Luo, Y.‐F., Williams, B. J., Blackwell, T. S., & Xie, C.‐M. (2012). Structure and function of OprD protein in Pseudomonas aeruginosa: From antibiotic resistance to novel therapies. International Journal of Medical Microbiology, 302(2), 63–68.
75 Li, M., Zhu, L., & Lin, D. (2011). Toxicity of ZnO nanoparticles to Escherichia coli: Mechanism and the influence of medium components. Environmental Science & Technology, 45(5), 1977–1983.
76 Lim, E.‐K., Chung, B. H., & Chung, S. J. (2018). Recent advances in pH‐sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Current Drug Targets, 19(4), 300–317.
77 Lin, C.‐C., Yeh, Y.‐C., Yang, C.‐Y., Chen, C.‐L., Chen, G.‐F., Chen, C.‐C., & Wu, Y.‐C. (2002). Selective binding of mannose‐encapsulated gold nanoparticles to type 1 pili in Escherichia coli. Journal of the American Chemical Society, 124(14), 3508–3509.
78 Liu, J., Chen, D., Peters, B. M., Li, L., Li, B., Xu, Z., & Shirliff, M. E. (2016). Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin‐resistant Staphylococcus aureus. Microbial Pathogenesis, 101, 56–67.
79 Liu,