Superatoms. Группа авторовЧитать онлайн книгу.
to design negative ions carrying up to five extra electrons that are stable against fragmentation or auto‐ejection of the electron.
In Chapter 10, we will discuss how the superatoms can be used to promote unusual chemistry such as making noble gas atoms form chemical bonds at room temperature and accessing high oxidation states of metal atoms. The potential of cluster‐assembled materials in storing hydrogen, catalyzing reactions, serving as building blocks of super‐ and hyper‐salts, electrolytes in Li‐ and Na‐ion batteries, and moisture‐insensitive hybrid perovskite‐based solar cells is also discussed.
References
1 1 Jena, P. and Sun, Q. (2018). Super atomic clusters: design rules and potential for building blocks of materials. Chem. Rev. 118: 5755–5870. See also references 1‐146 in Chapter 1.
2 2 Khanna, S.N. and Jena, P. (1992). Assembling crystals from clusters. Phys. Rev. Lett. 69: 1664–1667.
3 3 Khanna, S.N. and Jena, P. (1995). Atomic clusters: building blocks for a class of solids. Phys. Rev. B 51: 13705–13716.
4 4 Kroto, H.W., Heath, J.R., O’Brien, S.C. et al. (1985). C60: buckminsterfullerene. Nature 318: 162–163.
5 5 Kratschmer, W., Lamb, L.D., Fostiropoulos, K., and Huffman, D.R. (1990). Solid C60: a new form of carbon. Nature 347: 354–358.
6 6 Knight, W.D., Clemenger, K., de Heer, W.A. et al. (1984). Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 52: 2141–2144.
7 7 Mayer, M.G. (1948). On closed shells in nuclei. Phys. Rev. 74: 235–239.
8 8 Abegg, R. (1904). Die Valenz und das Periodische System. Versuch einer Theorie der Molekularverbindungen (the valency and the periodical system ‐ attempt on a theory of molecular compound). Z. Anorg. Chem. 39: 330–380.
9 9 Lewis, G.N. (1916). The atom and the molecule. J. Am. Chem. Soc. 38: 762–785.
10 10 Langmuir, I. (1919). The arrangement of electrons in atoms and molecules. J. Am. Chem. Soc. 41: 868–934.
11 11 Langmuir, I. (1921). Types of valence. Science 54: 59–67.
12 12 Hückel, E. (1931). Quantentheoretische beiträge zum benzolproblem. Eur. Phys. J. A 70: 204–286.
13 13 Hückel, E. (1930). Zur quantentheorie der doppelbindung. Eur. Phys. J. A 60: 423–456.
14 14 Wade, K. (1971). The structural significance of the number of skeletal bonding electron‐pairs in carboranes, the higher boranes and borane anions, and various transition‐metal carbonyl cluster compounds. Chem. Commun.: 792–793.
15 15 Wade, K. (1976). Structural and bonding patterns in cluster chemistry. Adv. Inorg. Chem. Radiochem. 18: 1–66.
16 16 Mingos, D.M.P. (1972). A general theory for cluster and ring compounds of the main group and transition elements. Nat. Phys. Sci. 236: 99–102.
17 17 Mingos, D.M.P. (1984). Polyhedral skeletal electron pair approach. Acc. Chem. Res. 17: 311–319.
18 18 Zintl, E., Goubeau, J., and Dullenkopf, W. (1931). Metals and alloys. I. Saltlikecompounds and intermetallic phases of sodium in liquid ammonia. Z. Phys. Chem. 154: 1–46.
19 19 Zintl, E. and Kaiser, H. (1933). Metals and alloys. VI. Ability of elements to form negative ions. Z. Anorg. Allgem. Chem. 211: 113–131.
20 20 Saito, S. and Ohnishi, S. (1987). Stable (Na19)2 as a giant alkali‐metal‐ atom dimer. Phys. Rev. Lett. 59: 190–193.
21 21 Gaussian 16 (2016). Revision C.01. Wallingford, CT: Gaussian, Inc.
22 22 Perdew, J.P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett.77: 3865.
23 23 Sun, W.G., Wang, J.J., Lu, C. et al. (2017). Evolution of the structural and electronic properties of medium‐sized sodium clusters: a honeycomb‐like Na20 cluster. Inorg. Chem. 56: 1241–1248.
24 24 Hakkinen, H. and Manninen, M. (1996). How “magic” is a magic cluster? Phys. Rev. Lett. 76: 1599–1602.
25 25 Cheng, L., Zhang, X., Jin, B., and Yang, J. (2014). Superatom‐atom superbonding in metallic clusters: a new look to the mystery of an Au20 pyramid. Nanoscale 6: 12440–12444.
26 26 Wang, Z.W. and Palmer, R.E. (2012). Direct atomic imaging and dynamical fluctuations of the tetrahedral Au20 cluster. Nanoscale 4: 4947–4949.
27 27 Leuchtner, R.E., Harms, A.C., and Castleman, A.W. Jr. (1989). Thermal metal cluster anion reactions: behavior of aluminum clusters with oxygen. J. Chem. Phys. 91: 2753–2754.
28 28 Li, X., Wu, H., Wang, X.B., and Wang, L.S. (1998). s−p hybridization and electron shell structures in aluminum clusters: a photoelectron spectroscopic study. Phys. Rev. Lett. 81: 1909–1912.
29 29 Rao, B.K. and Jena, P. (1999). Evolution of the electronic structure and properties of neutral and charged aluminum clusters: a comprehensive analysis. J. Chem. Phys. 111: 1890.
30 30 Khanna, S.N. and Jena, P. (1994). Designing ionic solids from metallic clusters. Chem. Phys. Lett. 219: 479–483.
31 31 Zheng, W.‐J., Thomas, O.C., Lippa, T.P. et al. (2006). The ionic KAl13 molecule: a stepping stone to cluster assembled materials. J. Chem. Phys. 124: 144304–144305.
32 32 Bergeron, D.E., Castleman, A.W. Jr., Morisato, T., and Khanna, S.N. (2004). Formation of Al13I−: evidence for the superhalogen character of Al13. Science 304: 84–87.
33 33 Han, Y.K. and Jung, J. (2008). Does the “superatom” exist in halogenated aluminum clusters? J. Am. Chem. Soc. 130: 2–3.
34 34 Jung, J., Kim, H., and Han, Y.K. (2011). Can an electron‐shell closing model explain the structure and stability of ligand‐stabilized metal clusters? J. Am. Chem. Soc. 133: 6090–6095.
35 35 Liu, F., Mostoller, M., Kaplan, T. et al. (1996). Evidence for a new class of solids: first principles study of K(Al13). Chem. Phys. Lett. 248: 213.
36 36 Huang, C., Fang, H., Whetten, R., and Jena, P. (2020). Robustness of superatoms and their potential as building blocks of materials: Al13− vs B(CN)4−. J. Phys. Chem. C 124: 6435–6440.
37 37 Clayborne, P.A., Lopez‐Acevedo, O., Whetten, R.L. et al. (2011). The Al50Cp*12 cluster – A 138‐electron closed shell (L = 6) superatom. Eur. J. Inorg. Chem. 2011: 2649–2652.
38 38 Walter, M., Akola, J., Lopez‐Acevedo, O. et al. (2008). A unified view of ligand‐protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. U. S. A. 105: 9157–9162.
39 39 Jadzinsky, P.D., Calero, G., Ackerson, C.J. et al. (2007). Structure of a thiol monolayer‐protected gold nanoparticle at 1.1 Å resolution. Science 318: 430–433.
40 40 Castleman, A.W. and Khanna, S.N. (2009). Clusters, superatoms, and building blocks of new materials. J. Phys. Chem. C 113: 2664–2675.
41 41 Claridge, S.A., Castleman, A.W., Khanna, S.N. et al. (2009). Cluster‐assembled materials. ACS Nano 3: 244–255.
42 42 Shafai, G., Hong, S., Bertino, M., and Rahman, T.S. (2009). Effect of ligands on the geometric and electronic structure of Au13 clusters. J. Phys. Chem. C 113: 12072–12078.
43 43 Zhang, Z.‐G., Xu, H.‐G., Feng, Y., and Zheng, W. (2010). Communications: investigation of the superatomic character of Al13 via its interaction with sulfur atoms. J. Chem. Phys. 132: 161103.
44 44 Gutsev, G.L. and Boldyrev, A.I. (1981). DVM‐Xα calculations on the ionization potentials of M Xk+1 − complex anions and the electron affinities of M Xk+1 “superhalogens”. Chem. Phys. 56: 277–283.
45 45 Gutsev, G.L. and Boldyrev, A.I. (1982). DVM Xα calculations on the electronic structure of “superalkali” cations. Chem. Phys. Lett. 92: 262–266.
46 46 Lievens, P., Thoen, P., Bouckaert, S. et al. (1999). Ionization potentials of LinO (2 < n <