Эротические рассказы

Главное правило реальности – не запутаться в своих иллюзиях. Милена КоффиЧитать онлайн книгу.

Главное правило реальности – не запутаться в своих иллюзиях - Милена Коффи


Скачать книгу
полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

      Примечания

      1

      Жизнь – это странствие (лат.).

      2

      Chacun porte sa croix en ce monde (франц. посл.).

      3

      Alea jacta est (лат. погов.).

      4

      Just when the caterpillar thought the world was over, it became a butterfly (англ. посл.).

      5

      Травянистое растение с широкими ланцетовидной формы листьями, которые имеют не только зеленые, белые и серебристые тона, но и яркие розовые, пурпурные краски.

      6

      Health maintenance organization – самая дешевая медицинская страховка, которая включает ограниченное количество врачей для посещения больным.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx7/2wBDAQUFBQcGBw4ICA4eFBEUHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh7/wgARCAgzBdwDASIAAhEBAxEB/8QAHAABAAEFAQEAAAAAAAAAAAAAAAECBAUGBwMI/8QAGwEBAAMBAQEBAAAAAAAAAAAAAAECAwQFBgf/2gAMAwEAAhADEAAAAeygAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAASAAImAASAAHkeoAAAgAEgAAgRMgAgEgABaF2xF4i7CQBBIgAIJEgAAAgAAAEiJgAEgAAADz9AAAAIABIAAQSAAiYBIAAiQAAAA8LBGWY+/TIAAAAAAAAAAAAAAAAAAHj7DjWhfUXzZplGcvO2J4NY/Q8Vn50+jOKdrArcDkmv965lanJZ3jnmuf1fXE4bgAPnrtXzFpn9G7XwXvVLBFkSOQc8+ovmfTJsGQ7Qn5zsfpnhyN23z5U+qa2q590FW3ztgOu8U2x6X1PLzls8PdE8a0L6i+atMp6Bh+2RIU0aPiNBvS7y3Y7mHG9c+hx809Z9uA3p9auY9Oy1ci66Ply4uM9vj4R31lp83U/SfELR28Z6AAaLzP6G5/anFdu0L6w0pxB3hnfg9Peh8r57Vuz6Z3fQTHbm3Ovo7k968x27Tvqm1OH6z9LWFL8S7Z8zbvevchlqA1jZ+FTXF/RPyN9M3rsAz0A1HlP0Jz+1eL7Ton1lfPhWvfT2FrfkHcflDtc16ZYX7PXjGgfUvy1rll+iYvr9ZCmjkO/8GtTHbtzn6gvSz2Uy2AW9wON699CcevTnGazGv3z+lxjuNURdck1v6FvTk+R7ErbgmufT2FtXQuqfLm2zHeRnqAAAAAAAAAAAAAAAAAA+cPo/5xvnsXbOJ9siQrfx9gAHmYTnuD7ramgcV7XxTSn1iMdgBZo5Dda39AXp8nfUXzZ0i1evDLYB81fSvzXfPbuzcS63E5Lk+zcfMb9R6buYFb844l27iW2P1mMNgk+bfpL5uvntPaOMdniWIy/LYtxz6S+dfqy+cjPUBxLtunzX5/8AqT5S+gdM94GO3zfn8BsW+PbhhsxXPerTEhIADRN70WY4B9Y/J31jpncDLUD5M7VxXtm2PRxjs5V1Xldq8t+pvlr6ltQW+evBI13sW2PRBjsBj+JbBtNqcc2jZeM6U+sFneY7ANB37QprwP6z+TPqPSmWow/Mc7807hpfdL19Bno+XfqL5dvn0jrXJetVlE81i2ob+vrV+cfqX5a+pr1ygy1AFgazidR7xavHdM3PTNM/pYY7U/MnePmrTLtfT9e2GmgRIHPuD/WPylrj9CbjxvsmegRYAAAAAAAAAAAAAAAAB84/R3zjfPYu2cT7ZEhW4ADju685tToO5Fbc54p2vim2X1iMdgHK+o/Mlqde6Bzn1Tg+adU41pl9aevPehY7Al81/SnzXpnXuPj2aHCsF9JaYa71T5G+hJbsM9Oc8N7lxLbHcfXvk534JHfB8/al9XfN96bT2fjHZ6aOKdr46jnv1J8l/V9q+oz1AYjL4RHzD3Thf0Ltjugw2+b8bkto3xxnj9As9Pl/6f4l20kVuAA0XetFmOAfWPyd9Y6Z3Ay1A+TO2cT7Ztj0cY7OV9U5XavLu+8C+pbU41r/ANBzW3M+mSrYEvH25wjnH0ZwPfb03j5a7bzGY3zqfzD9OVtUK3aFvuhTXgfV+UfWeufH9a+i6c78C7Hwmq9fpAZavl36i+Xb59I61yXrNZxnJqevyv8AVNs1KtvnP6l+WvqXXLKDLYCOE7hjrU3vOlbcc0zc9M2x+lhjvoXA/oX562x+ocxqm146gkB8ufUfyzpluvceP9grYK3AAAAAAAAAAAAAAAAAfOP0d833z2TtnEe3RIVuAtbnhs1wP0Hp2/zAVvzjivaOK7Y/WU01Y7CIaDp2A73pnrjd1L6RzD6G1C1eO/SPyN9I2rtAz1fNP0t8y6Z7p2bjPZqytbrUq2+de0cX+ltcthGW3OeJds4ltj9aDHYB83fSPzZfPa+0cV7VEtJ3aitvkn6H4xc7Y/SDy9cdwGhb387Wrrn1LzTqkwFL/N+1aht22PZxjtjcjOjI3lq20pAAaLvWhTHA/rD5O+sL53Qz1A+TO2cR7Xth0oY7uV9U5VavL/qX5Y+p7UDPUACPnDrejXz3Svd1L6RY9FTHyP8AQPLPTXL6GGO7Qd+55NeE/WfyZ9Z6U9iMteL6Bmsttj3gY7Pl36i+W9M+lZjVPGG5dBiaXaltunnzt9S/LX1Frllxlsw+U+eZrT9Ea7swEW45pm4abth9MDHex+WPrXh988j1/wCU/pYywpoBjflnrGv65dV2sy0BIAAAAAAAAAAAAAAACmrzMF8/dcrvnzztmreqd+FLrS7wSNN5h1qdKbhk9S23O7GZPTzR+Ydyq1zzOx6Bueel3oO4aijlnf8AVLm1d6FNGBz3OUcY2joFWue45LU9sy0tvmD6L1i9NA6fj/MjlvXtuTo3SCtmMyenw0fl/c6tM81sWgbpTTJU1eUTg/n3rld8+f8Aa9U9076iaXwnz79O+Vq/PfXcbrM16piOe5mJ1fOdGyxElbra5wZ877Fv06ZXS1prb35t0KmY2vOW1zS4JAx3Md0wtq8K+hrCi1d9ucPmM7+Gu5bTJcN6fs1N89yyen7hnpieRb9j7V4n9G6/RMdC9bG+poAw+Y0dHJujXEXpvdzh8xS6zvNeNC5L3KvTO53fnu900uuT9Y58jg3fPKi9L3RNuz1bcc77ezEvP0tIth/nPtVV8+L/AEviNriQrew55teBmvC+9+VF6b342dnnpoOv9DnSm7Xuu7Fndh8xohzrWOxzrnsOwc66Blp729wT8+4H6f1G+dntPMrSJ6bzy43Q5T3C6RIRYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeJ7MdUi/WFBkmNvj0CSnHIybHyX6wF+x3oXoSAAYy/R6BIAAAsUXywF+x18VkJlja0X7HjIBIAsEX7HyX7G5Ek8k+rG1ov2P9C8CQC01xG3NJyRsiitIAABj9fRuDSb82d4e6Rj0ZBj5L9YC/WEGQWF+ktPJGQWFJkXj7JALGEX7H5BIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADC5oce5P9XfKWuO27fn99pfhuifVvJ7Vr6r8j/U0Tc8r6750v8lbPrnZt8cF5dxZafOWZ7VyyY66KaADAo4p0bh2xbZfSQx2AAAaDvxHHOXdtxumfH/p75h+opjL0VstuWco+qvnDTKy6pqfdIkKaAOd9EI+Z8V0HVd8eh9N9mGzGZMnknIvrT5Q1x2zqWJ6XS4prfx43g9vvnr+4dImLc41DuxHy32C8+f70+uHOui5ajBji+sdo0z0Tc+lq351rXakPlbtVN3au7fNP0txOJo9e1D5dbI1zynl29lp81/SfFu1Gncw+gOfp4N1jk31lfPHZky2YjL8ImuiZG6zW2O5dLMNwSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbfKP1f8oa5d83vRN7zu0ndeGHOvqXivfr1UV0Z6fJ3aOL9r2w6SRjv5zx/siASA4l2DhFqb/wv65+bbV7VtHCO70uEWAAYXL8FmuW33PYE+cPqP5c+o9M8sMtnzn9GfOl8833DgfX051iclS/oADi2q7VqW2H0ssasd7xZi6+UPqD5f0y7T0jnHR6Xc86HwaWm/U3z39EzUKaAPn36C5ranJPqP5I+n7VzXz33n5TTuf0JyvqlZCtwMZ63xC1uiQOCDXHvYy2trkGh75ocxwH61+S/rTTP1LTLXTsfqndbU4D7ePtpTvQx2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAt/lD6v8AlDXLvetbNvdLcLy/XSfH2K2UV0HydnsD3HbDRrP6IjPT59+g+N9kArceZyzNcY6Bpl2TnWD8a25l9R/K/Xr062MtgBrCNLz+hd4tWdV2rVa2+cPqP5c+o9cssMtnzp9F/Ol8/PfsB3CXHdD+nsTE8l7V8odhmvVBnrxbnvQtV2w2GruDPTiEdwHC+e/Wnyjenaej846Pno+c/ozgVo8foP5h+nkBTQBpO7aDMcE+l/mr6q0ysfmH6s+VInt3SuO9ipcIsAAABwQa497GWwDQ980OY4F9afJX1rpn68Y3bA0vu2ZKz8/+3h77Zd6GOwABpemTXs7jCY7O4wOzuMdMic2IsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABb/KH1d8o65d83vQ98zuEWAUV+R8n904R3bbHoQx2o8bnjKOyVeHuOedC+bbV3DpnrkonEMuieK6J9GfMGuX1p6c+6DlqCbf542PY757tkyl2q7VqR85/Ufy59Qa5ZkZbPnT6L+cb557uHD+4RIwdbfPG+cx+itctrGW3FtV2nVNsfpUY7AU/KH1d8oaZdq6RzTpdLuY9Oton5P8Apr59zW2P0O8vXHcBxfqXzhfPOfROubHWz5x+jtXlwX6b+VN3vn3tb3GWoJFsXIAOCKW2PfRjsA0PfNAmOCfVfyp0vXK37rg89loFbfP3va+++HfRjuABgcDvhGht8TGht8GibXkESCQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGLylkc84t9J13z5f0+L2LZgVsA1Ta8Qj5c37rLTPS43WmttE0Pu8zGx2V9bU05Zzjv1V88Zu2u7FS4J0fiP0CvThHcve5hd8z6jhIn5177f+tozwpfAc26pjZr82dd3mi9b7LWGQzvoHGe/+l68Q6hnaYalzzuuclzzpJS0aXumvnD8N9DNM8Hveu7JnpXY31qnn/EfpKu+fJup+l1Fs2KWwfB/pSm9fnHp2ZwE1y+v3WwRPIutbRVEhFgNU4j9Mxany5v3QNftFvb3mVieddA3C6iQraNE3zWkcId4aZ4ffNa2XPQE61zDrlpNfmnr+67DavoKaRoe+a0jgvr3dpnid61rZc9ASAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABj7DJc0r0bxm9E3uaYvx9eUxv1XN4DPW5VjitTjTP3OU0+L9Br5t0mcwnICx1202aNdfzdfJ437e8vW3HGLxuCjXK5PF6VXp7HVrGz247PFZfnjXbZ07cItMRoa2+ZvRN9nHGW/vzONui57Q97nDD+XjpEbdM8fbTJy2OaNQjTco1rOGZyGk7tOMYDWso0rz2qalG/aItLu3DhKNT2qN6nPdpjXL5jTc5OGRxuU5yvuWS550VF4JwGrxbO63g9nbWuxaFn4najTZwzdpoe+R0VxoWcX3v28vW3EAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5p0vmlevPbVzHLK7vxDdtJjq7f6UV38zkuyadsNPV3PE2824NG7TrGzxoFuUCjy98WYbWtj02nf2Gdd2K3DYXOv6a23/AEXZcBXbIb7om9zk0feNHmLPonO+iRdynq3KV9w2bWtlnmaJvdkc86fxXrNerB3+rdItzra5Ti530TnlerI7jp25TnbXJOOOutIx0dG4836BoderomewWdt59tck15Nvmh75T0MxPov57QN/5/Xp8t10DPrbbVxvqs53vGet8fr1dfv7O8v51hTkQ0jd4i/Leoc9wley727TNzW2cX84AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzTdObV7d12vmPR5w9+GdI51Xs7Z6afuF/P5Nm9g5tT0uzOc+9uPf50LfZxBVEwjVtp5tlo6Nz5rntJjfYehYfMTzci3jWMbT0Ouc0WlsM7vfKepTl6aNtHOIZPovIOjr5jlG686i/Qdm5h0e3NcCcea2e884p6e7bd5+l/OBVzvcebV69q3LlnSFLuwv/G3PxbtXIL7P1uncjzuvzn0vOaLvVuAYGa6HvnNthp6XRkTfzHP9r5xXrz++cqya2E3bTOpxf04
Скачать книгу
Яндекс.Метрика