Трактат о человеческой природе. Дэвид ЮмЧитать онлайн книгу.
является не что иное, как некоторый общий образ; и очевидно, что прямые линии могут сливаться друг с другом и тем не менее соответствовать этому образцу, хотя бы и исправленному с помощью каких угодно реально применяемых или воображаемых способов.
Куда бы ни обратились математики, они всегда наталкиваются на следующую дилемму. Если они судят о равенстве или о каком-нибудь другом соотношении с помощью непогрешимого и точного мерила, т. е. с помощью перечисления минимальных неделимых точек, то они, во-первых, пользуются бесполезным на практике мерилом, а во-вторых, на деле устанавливают неделимость протяжения, которую стараются опровергнуть. Если же они пользуются, как это обычно бывает, неточным мерилом, полученным в результате сравнения общего вида объектов и исправления [этого сравнения] с помощью измерения и наложения, то их основные принципы, несмотря на достоверность и непогрешимость, оказываются слишком грубыми для тех тонких заключений, которые обычно из них выводят. Основные принципы опираются на воображение и чувства, следовательно, и заключение из них не может выходить за пределы этих способностей, а тем более не может противоречить последним.
Это может несколько открыть нам глаза и показать, что ни одному геометрическому доказательству бесконечной делимости протяжения не присуща та сила, которую мы, естественно, приписываем всякому аргументу, выступающему со столь громкими притязаниями. В то же время мы узнаем и причину, в силу которой геометрии недостает очевидности именно в этом пункте, тогда как все остальные ее рассуждения заслуживают полного нашего согласия и одобрения. В самом деле, выяснить причину этого исключения, по-видимому, даже более необходимо, чем указать на то, что мы действительно должны сделать такое исключение, т. е. признать все математические аргументы в пользу бесконечной делимости безусловно софистическими. Ведь очевидно, что если ни одна идея количества не делима до бесконечности, то нельзя вообразить более явной нелепости, чем стремление доказать, что само количество допускает такое деление, и притом доказать это с помощью идей, свидетельствующих как раз о противоположном. А так как указанная нелепость сама по себе весьма очевидна, то и всякий основанный на ней аргумент связан с новой нелепостью и заключает в себе очевидное противоречие.
В качестве примера я могу привести те аргументы в пользу бесконечной делимости, которые основаны на [рассмотрении] точки касания. Я знаю, что ни один математик не согласится с тем, чтобы о нем судили по тем чертежам, которые он чертит на бумаге; он скажет нам, что это лишь неточные наброски, служащие только для того, чтобы более легко вызывать некоторые идеи, которые и являются истинной основой всех наших рассуждений. Я ничего против этого не имею и готов в нашем споре принимать в расчет исключительно данные идеи. Итак, я попрошу математика образовать как можно точнее идеи круга и прямой