Enzyme-Based Organic Synthesis. Cheanyeh ChengЧитать онлайн книгу.
Nicotra, A., Pierucci, F., Parvez, H., and Senatori, O. (2004). Neurotoxicology 25: 155–165.
123 123 Kuhn, H. and Borchert, A. (2002). Free Radic. Biol. Med. 33: 154–172.
124 124 Gandhi, H., O’Reilly, K., Gupta, M.K. et al. (2017). RSC Adv. 7: 19506–19556.
125 125 Dembitsky, V.M., Glorizova, T.A., and Poroikov, V.V. (2007). Mini Rev. Med. Chem. 571–589.
126 126 Dembitsky, V.M. (2008). Eur. J. Med. Chem. 43: 223–251.
127 127 Dufour, C. and Loonis, M. (2005). Chem. Phys. Lipids 138: 60–68.
128 128 Dussault, P.H., Anderson, T.A., Hayden, M.R. et al. (1996). Tetrahedron 52: 12381–12398.
129 129 Coffa, G., Imber, A.N., Maguire, B.C. et al. (2005). J. Biol. Chem. 280: 38756–38766.
130 130 Gao, B., Boeglin, W.E., and Brash, A.R. (2010). Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 1801: 58–63.
131 131 Zheng, Y. and Brash, A.R. (2010). J. Biol. Chem. 285: 39876–39887.
132 132 Boeglin, W.E., Itoh, A., Zheng, Y. et al. (2008). Lipids 43: 979–987.
133 133 Baba, N., Yoneda, K., Tahara, S. et al. (1990). J. Chem. Soc. Chem. Commun. 1281–1282.
134 134 Hamberg, M., Su, C., and Oliw, E. (1998). J. Biol. Chem. 273: 13080–13088.
135 135 Andreou, A., Göbel, C., Hamberg, M., and Feussner, I. (2010). J. Biol. Chem. 285: 14178–14186.
136 136 Hoch, U., Adam, W., Fell, R. et al. (1997). J. Mol. Catal. A Chem. 117: 321–328.
137 137 Van de Velde, F., van Rantwijk, F., and Sheldon, R.A. (2001). Trends Biotechnol. 19: 73–80.
138 138 Haring, D., Herderich, M., Schüler, E. et al. (1997). Tetrahedron Asymm. 8: 853–856.
139 139 Haring, D., Schüler, E., and Schreier, P. (1998). J. Mol. Catal. B: Enzym. 5: 339–342.
140 140 Liese, A., Seelbach, K., and Wandrey, C. (2006). Industrial Biotransformations. New York: Wiley‐VCH.
141 141 Patel, R.N. (2006). Curr. Opin. Drug Discov. Devel. 9: 741–764.
142 142 Genov, D.G. and Ager, D.J. (2004). Angew. Chem. Int. Ed. 43: 2816–2819.
143 143 Matsuda, T., Yamanaka, R., and Nakamura, K. (2009). Tetrahedr. Asymm. 20: 513–557.
144 144 Cheng, C. and Tsai, H.‐R. (2008). J. Chem. Technol. Biotechnol. 83: 1479–1485.
145 145 Kratzer, R., Pukl, M., Egger, S. et al. (2011). Biotechnol. Bioeng. 108: 797–803.
146 146 Wang, P., Cai, J.‐B., Ouyang, Q. et al. (2011). Biotechnol. Products Proc. Eng. 90: 1897–1904.
147 147 Hansen, K.B., Chilenski, J.R., Desmond, R., and Devine, P.N. (2003). Tetrahedr. Asymm. 14: 3581–3587.
148 148 Pollard, D., Truppo, M., Pollard, J. et al. (2006). Tetrahedr. Asymm. 17: 554–559.
149 149 Jin, J.‐Z., Li, H., and Zhang, J. (2010). Appl. Biochem. Biotechnol. 162: 2075–2086.
150 150 Blay, G., Domingo, L.R., Hernandez‐Olmos, V., and Pedro, J.R. (2008). Chem. A Eur. J. 14: 4725–4730.
151 151 Oh, K., Shimura, Y., Ishikawa, K. et al. (2008). Bioorg. Med. Chem. 16: 1090–1095.
152 152 Bisaha, S.N., Malley, M.F., Pudzianowski, A. et al. (2005). Bioorg. Med. Chem. Lett. 15: 2749–2751.
153 153 Lipshutz, B.H., Lower, A., Kucejko, R.J., and Noson, K. (2006). Org. Lett. 8: 2969–2972.
154 154 Mangas‐Sánchez, J., Busto, E., Gotor‐Fernández, V. et al. (2011). J. Org. Chem. 76: 2115–2122.
155 155 Johanson, T., Katz, M., and Gorwa‐Grauslund, M.F. (2005). FEMS Yeast Res. 5: 513–525.
156 156 Parachin, N.S., Carlquist, M., and Gorwa‐Grauslund, M.F. (2009). Appl. Microbiol. Biotechnol. 84: 487–497.
157 157 Chˆenevert, R., Fortier, G., Rhalid, R.B., and Weuster‐Botz, G.D. (1992). Tetrahedron 15: 6769–6776.
158 158 Bhalerao, U.T., Chandraprakash, R., Babu, L., and Fadnavis, N.W. (1993). Synth. Commun. 23: 1201–1208.
159 159 Zhao, Q., Hou, Y., Gong, G.‐H. et al. (2010). Appl. Biochem. Biotechnol. 160: 2287–2299.
160 160 Ribeiro, J.B., Ramos, M.C.K.V., de Aquino Neto, F.R.S. et al. (2005). Catal. Commun. 6: 131–133.
161 161 Loncaric, C. and Wulff, W.D. (2001). Org. Lett. 3: 3675–3678.
162 162 Anand, N., Kapoor, M., Koul, S. et al. (2004). Tetrahedr. Asymm. 15: 3131–3138.
163 163 Milagre, C.D.F., Milagre, H.M.S., Moran, P.J.S., and Rodrigues, J.A.R. (2009). J. Mol. Catal. B 56: 55–60.
164 164 Hillier, M.C., Marcoux, J.F., Zhao, D.L. et al. (2005). J. Org. Chem. 70: 8385–8394.
165 165 Lou, W.‐Y., Wang, W., Li, R.‐F., and Zong, M.‐H. (2009). J. Biotechnol. 143: 190–197.
166 166 Matsuda, T., Marukado, R., Mukouyama, M. et al. (2008). Tetrahedr. Asymm. 19: 2272–2275.
167 167 Wolfson, A. and Dlugy, C. (2009). Org. Commun. 2: 34–41.
168 168 Höllrigl, V., Hollmann, F., Kleeb, A.C. et al. (2008). Appl. Microbiol. Biotechnol. 81: 263–273.
169 169 Rajagopalan, A. and Kroutil, W. (2011). Materials Today 14: 144–152.
170 170 Stuemer, R., Hauer, B., Hall, M., and Faber, K. (2007). Curr. Opin. Chem. Biol. 11: 203–213.
171 171 Toogood, H.S., Fryszkowska, A., Hare, V. et al. (2008). Adv. Synth. Catal. 350: 2789–2803.
172 172 Toogood, H.S., Gardiner, J.M., and Scrutton, N.S. (2010). ChemCatChem 2: 892–914.
173 173 Blehert, D.S., Fox, B.G., and Chambliss, G.H. J. Bacteriol. 181: 6254–6263.
174 174 Komduur, J.A., Leão, A.N., Monastyrska, I. et al. (2002). Curr. Genet. 41: 401–406.
175 175 Quezada, M.A., Carballerira, J.D., and Sinisterra, J.V. (2009). Bioresour. Technol. 100: 2018–2025.
176 176 Hall, M., Stueckler, C., Kroutil, W. et al. (2007). Angew. Chem. Int. Ed. 46: 3934–3937.
177 177 Kawai, Y., Hayashi, M., Inaba, Y. et al. (1998). Tetrahedron Lett. 39: 5225–5228.
178 178 Khor, G.K. and Uzir, M.H. (2011). Yeast 28: 93–107.
179 179 Goretti, M., Ponzoni, C., Caselli, E. et al. (2011). Bioresour. Technol. 102: 3993–3998.
180 180 Tauber, K., Hall, M., Krotil, W. et al. (2011). Biotechnol. Bioeng. 108: 1462–1467.
181 181 Grau, M.M., van der Toorn, J.C., Otten, L.G. et al. (2009). Adv. Synth. Catal. 351: 3279–3286.
182 182 Stueckler, C., Reiter, T.C., Baudendistel, N., and Faber, K. (2010). Tetrahedron 66: 663–667.
183 183 Hall, M., Stueckler, C., Hauer, B. et al. (2008). Eur. J. Org. Chem. 1511–1516.
184 184 Brenna, E., Gatti, F.G., Manfredi, A. et al. (2011). Eur. J. Org. Chem. 4015–4022.
185 185 Guan, H., You, S., Wang, X., and Yang, L. (2010). Biocatal. Biotransform. 28: 185–191.
186 186 Nie, Y., Xu, Y., Lv, T.F., and Xiao, R. (2009). J. Chem. Technol. Biotechnol. 84: 468–472.
3 Organic Synthesis with Transferases
3.1 Transamination with Aminotransferases
The use of transaminases, or aminotransferases, as a catalyst for the organic synthesis of chiral amino compounds from the corresponding keto acids, ketones, or aldehydes has been known a very powerful method since last decade. Their immense potential in the industrial applications can be due to not only their concise reaction, excellent enantioselectivity and environmental friendliness but also their easy combination