Эротические рассказы

Estadística aplicada a la ingeniería y los negocios. Carlos José CastilloЧитать онлайн книгу.

Estadística aplicada a la ingeniería y los negocios - Carlos José Castillo


Скачать книгу

       Capítulo

       1 Distribuciones muestrales

      Por lo general, el análisis estadístico de datos se realiza con el propósito de obtener conclusiones válidas para una población con base en la información proporcionada por la muestra. De ahí que el conocimiento de las diferentes técnicas de muestreo y cómo se distribuyen los estadísticos muestrales resulta fundamental para obtener los resultados deseados.

       Conocimientos previos

      Estadística descriptiva, cálculo de probabilidades, distribuciones de probabilidad

       Secciones

      1. Conceptos básicos

      2. Muestra aleatoria

      3. Tipos de muestreo

      4. Principales estadígrafos

      5. Distribución de la media muestral

      6. Teorema central del límite

      7. Distribuciones de muestras pequeñas

      8. Distribuciones muestrales de un estadígrafo

      9. Distribuciones muestrales de dos muestras

       Sabes

      Capacidades adquiridas

      

Identificar y diferenciar los estadígrafos de posición y de dispersión

      

Construir la distribución de probabilidad de una variable aleatoria

      

Calcular e interpretar el valor esperado y la varianza de una variable aleatoria

      

Hacer uso de la distribución normal con el software Minitab

       Piensas

      Competencias por lograr

      

Seleccionar muestras aleatorias con el software Minitab

      

Reconocer la importancia del teorema central del límite en el análisis estadístico

       Haces

      Habilidades por desarrollar

      

Determinar la técnica muestral adecuada para un caso real

      

Hacer uso apropiado de las distintas distribuciones muestrales

      Las poblaciones suelen ser demasiado grandes para estudiarlas en su totalidad; se puede estar interesado, por ejemplo, en determinar el consumo promedio per cápita en una región del país o la proporción de consumidores que prefieren un determinado producto. En estos casos, es preferible elegir una muestra representativa que tenga un tamaño manejable y que permita obtener conclusiones válidas sobre la población objetivo que interesa estudiar. Para el primero de los ejemplos citados, se puede calcular la media aritmética

de la muestra de consumidores y utilizarla como una estimación de la media aritmética poblacional μ. Cuando se desea usar una muestra para obtener conclusiones sobre la población, se deben aplicar las técnicas de la estadística inferencial.

      En la estadística inferencial se desarrollan dos puntos importantes: el problema de estimación de los parámetros y el de la dócima o prueba de hipótesis, que serán desarrollados en los capítulos posteriores.

      a. Unidad de análisis.- Se define como el elemento que se observa en una población y del que se busca información de características o variables de interés.

      b. Población.- Se entiende por población o universo a la totalidad de elementos o unidades de análisis, ya sean empresas, personas, objetos, etcétera, que presentan una o más características observables.

      c. Población objetivo.- Es la población completamente caracterizada; por ejemplo, en una encuesta sobre la aceptación de un nuevo producto de belleza de una empresa que produce cosméticos, la población objetivo estará conformada por todas las mujeres que son usuarias de los productos de la empresa, con edades entre 20 y 39 años, pertenecientes al nivel socioeconómico medio alto; a partir de esta población se selecciona una muestra de mujeres para la investigación.

      d. Marco muestral.- Se define como el listado de elementos, unidades de análisis, a partir del cual se seleccionará la muestra.

      e. Unidad de muestreo.- Son aquellas que contienen las unidades de análisis de la población y que se utilizarán para seleccionar la muestra. En general, la unidad de muestreo se encuentra asociada a la selección de los conjuntos de unidades de análisis que serán tomados en cuenta para conformar la muestra final en la investigación.

      f. Error muestral.- Es la diferencia entre el resultado obtenido a partir de una muestra y el que se obtendría de la población; por ejemplo, la diferencia existente entre la media muestral y la media poblacional. También se le denomina error de estimación, y en resumen es el error que se origina debido a que se trabaja sobre una muestra en lugar de la población completa.

      La estimación de parámetros y las pruebas de hipótesis se basan en la información proporcionada por las unidades de análisis, sobre una característica de estudio X, mediante sus valores x1, x2,…, xn. Estas unidades de análisis se eligen de manera independiente y deben tener la misma probabilidad de ser seleccionadas. El conjunto de estas unidades seleccionadas recibe el nombre de muestra aleatoria.

      Cuando se trata de poblaciones finitas de N elementos se seleccionarán

muestras diferentes sin reemplazamiento, donde
; si el muestreo es con reemplazamiento se seleccionarán k = Nn muestras diferentes.

      Definición. Se dice que los valores x1, x2,…, xn de la variable de interés X con función de probabilidad f (x) constituyen una muestra aleatoria de tamaño n, si son variables aleatorias independientes e idénticamente distribuidas.

      Es decir, si se sabe que la ley de probabilidad es la misma para cada una de las observaciones, esto es:

      f (x1) = f (x2) = … = f (xn)

      La función de probabilidad de las observaciones muestrales está dada por:

      La expresión (1) se conoce como función de probabilidad conjunta.

      Se dispone de dos métodos para seleccionar las muestras de poblaciones: muestreo probabilístico


Скачать книгу
Яндекс.Метрика