Drug Transporters. Группа авторовЧитать онлайн книгу.
in the 5' CpG island of the SLC47A1 (Multidrug and Toxin Extrusion Protein MATE1) gene and interindividual variability in MATE1 expression in the human liver. Mol Pharmacol 2018; 93 (1):1–7.
89 [89] FDA U. Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers 2020 (2020). Accessed date: April 2, 2021.
90 [90] FDA U. Clinical Drug Interaction Studies — Cytochrome P450 Enzyme‐ and Transporter‐Mediated Drug Interactions Guidance for Industry. Center for Drug Evaluation and Research 2020.
91 [91] Shibata M, Toyoshima J, Kaneko Y, Oda K, Nishimura T. A drug‐drug interaction study to evaluate the impact of peficitinib on OCT1‐ and MATE1‐mediated transport of metformin in healthy volunteers. Eur J Clin Pharmacol 2020; 76 (8):1135–1141.
92 [92] Hibma JE, Zur AA, Castro RA, Wittwer MB, Keizer RJ, Yee SW, Goswami S, Stocker SL, Zhang X, Huang Y, Brett CM, Savic RM, Giacomini KM. The effect of famotidine, a MATE1‐selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacokinet. 2016; 55 (6):711–721.
93 [93] Morrissey KM, Stocker SL, Chen EC, Castro RA, Brett CM, Giacomini KM. The effect of nizatidine, a MATE2K selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin in healthy volunteers. Clin Pharmacokinet 2016; 55 (4):495–506.
94 [94] Oh J, Chung H, Park SI, Yi SJ, Jang K, Kim AH, Yoon J, Cho JY, Yoon SH, Jang IJ, Yu KS, Chung JY. Inhibition of the multidrug and toxin extrusion (MATE) transporter by pyrimethamine increases the plasma concentration of metformin but does not increase antihyperglycaemic activity in humans. Diabetes Obes Metab 2016; 18 (1):104–108.
95 [95] Kusuhara H, Ito S, Kumagai Y, Jiang M, Shiroshita T, Moriyama Y, Inoue K, Yuasa H, Sugiyama Y. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther 2011; 89 (6):837–844.
96 [96] Shen H, Yang Z, Zhao W, Zhang Y, Rodrigues AD. Assessment of vandetanib as an inhibitor of various human renal transporters: inhibition of multidrug and toxin extrusion as a possible mechanism leading to decreased cisplatin and creatinine clearance. Drug Metab Dispos 2013; 41 (12):2095–2103.
97 [97] Yamazaki T, Desai A, Goldwater R, Han D, Lasseter KC, Howieson C, Akhtar S, Kowalski D, Lademacher C, Rammelsberg D, Townsend R. Pharmacokinetic interactions between isavuconazole and the drug transporter substrates atorvastatin, digoxin, metformin, and methotrexate in healthy subjects. Clin Pharmacol Drug Dev 2017; 6 (1):66–75.
98 [98] Turk D, Hanke N, Lehr T. A physiologically‐based pharmacokinetic model of trimethoprim for MATE1, OCT1, OCT2, and CYP2C8 drug‐drug‐gene interaction predictions. Pharmaceutics 2020; 12 (11):1074.
99 [99] Chang C, Hu Y, Hogan SL, Mercke N, Gomez M, O'Bryant C, Bowles DW, George B, Wen X, Aleksunes LM, Joy MS. Pharmacogenomic variants may influence the urinary excretion of novel kidney injury biomarkers in patients receiving cisplatin. Int J Mol Sci 2017; 18 (7):1333.
100 [100] Nakada T, Kudo T, Kume T, Kusuhara H, Ito K. Estimation of changes in serum creatinine and creatinine clearance caused by renal transporter inhibition in healthy subjects. Drug Metab Pharmacokinet 2019; 34 (4):233–238.
101 [101] Nakada T, Kudo T, Kume T, Kusuhara H, Ito K. Quantitative analysis of elevation of serum creatinine via renal transporter inhibition by trimethoprim in healthy subjects using physiologically‐based pharmacokinetic model. Drug Metab Pharmacokinet 2018; 33 (1):103–110.
102 [102] Ito S, Kusuhara H, Kumagai Y, Moriyama Y, Inoue K, Kondo T, Nakayama H, Horita S, Tanabe K, Yuasa H, Sugiyama Y. N‐methylnicotinamide is an endogenous probe for evaluation of drug‐drug interactions involving multidrug and toxin extrusions (MATE1 and MATE2‐K). Clin Pharmacol Ther 2012; 92 (5):635–641.
103 [103] Müller F, Pontones CA, Renner B, Mieth M, Hoier E, Auge D, Maas R, Zolk O, Fromm MF. N(1)‐methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: studies on the metformin‐trimethoprim interaction. Eur J Clin Pharmacol 2015; 71 (1):85–94.
104 [104] Kato K, Mori H, Kito T, Yokochi M, Ito S, Inoue K, Yonezawa A, Katsura T, Kumagai Y, Yuasa H, Moriyama Y, Inui K, Kusuhara H, Sugiyama Y. Investigation of endogenous compounds for assessing the drug interactions in the urinary excretion involving multidrug and toxin extrusion proteins. Pharm Res 2014; 31 (1):136–147.
105 [105] Miyake T, Kimoto E, Luo L, Mathialagan S, Horlbogen LM, Ramanathan R, Wood LS, Johnson JG, Le VH, Vourvahis M, Rodrigues AD, Muto C, Furihata K, Sugiyama Y, Kusuhara H. Identification of appropriate endogenous biomarker for risk assessment of multidrug and toxin extrusion protein‐mediated drug‐drug interactions in healthy volunteers. Clin Pharmacol Ther 2021; 109 (2):507–516.
106 [106] Chung JY, Cho SK, Kim TH, Kim KH, Jang GH, Kim CO, Park EM, Cho JY, Jang IJ, Choi JH. Functional characterization of MATE2‐K genetic variants and their effects on metformin pharmacokinetics. Pharmacogenet Genomics 2013; 23 (7):365–373.
107 [107] Grün B, Kiessling MK, Burhenne J, Riedel KD, Weiss J, Rauch G, Haefeli WE, Czock D. Trimethoprim‐metformin interaction and its genetic modulation by OCT2 and MATE1 transporters. Br J Clin Pharmacol 2013; 76 (5):787–796.
108 [108] Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose‐lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes 2009; 58 (3):745–749.
109 [109] Becker ML, Visser LE, van Schaik RH, Hofman A, Uitterlinden AG, Stricker BH. Interaction between polymorphisms in the OCT1 and MATE1 transporter and metformin response. Pharmacogenet Genomics 2010; 20 (1):38–44.
110 [110] Dujic T, Zhou K, Yee SW, van Leeuwen N, de Keyser CE, Javorský M, Goswami S, Zaharenko L, Hougaard Christensen MM, Out M, Tavendale R, Kubo M, Hedderson MM, van der Heijden AA, Klimčáková L, Pirags V, Kooy A, Brøsen K, Klovins J, Semiz S, Tkáč I, Stricker BH, Palmer C, t Hart LM, Giacomini KM, Pearson ER. Variants in pharmacokinetic transporters and glycemic response to metformin: a metgen meta‐analysis. Clin Pharmacol Ther 2017; 101 (6):763–772.
111 [111] Chen Y, Teranishi K, Li S, Yee SW, Hesselson S, Stryke D, Johns SJ, Ferrin TE, Kwok P, Giacomini KM. Genetic variants in multidrug and toxic compound extrusion‐1, hMATE1, alter transport function. Pharmacogenomics J 2009; 9 (2):127–136.
112 [112] Kajiwara M, Terada T, Ogasawara K, Iwano J, Katsura T, Fukatsu A, Doi T, Inui K. Identification of multidrug and toxin extrusion (MATE1 and MATE2‐K) variants with complete loss of transport activity. J Hum Genet 2009; 54 (1):40–46.
113 [113] Stocker SL, Morrissey KM, Yee SW, Castro RA, Xu L, Dahlin A, Ramirez AH, Roden DM, Wilke RA, McCarty CA, Davis RL, Brett CM, Giacomini KM. The effect of novel promoter variants in MATE1 and MATE2 on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther 2013; 93 (2):186–194.
114 [114] Choi JH, Yee SW, Ramirez AH, Morrissey KM, Jang GH, Joski PJ, Mefford JA, Hesselson SE, Schlessinger A, Jenkins G, Castro RA, Johns SJ, Stryke D, Sali A, Ferrin TE, Witte JS, Kwok PY, Roden DM, Wilke RA, McCarty CA, Davis RL, Giacomini KM. A common 5'‐UTR variant in MATE2‐K is associated with poor response to metformin. Clin Pharmacol Ther 2011; 90 (5):674–84.
115 [115] Moeez S, Khalid Z, Jalil F, Irfan M, Ismail M, Arif MA, Niazi R, Khalid S. Effects of SLC22A2 (rs201919874) and SLC47A2 (rs138244461) genetic variants on metformin pharmacokinetics in Pakistani T2DM patients. J Pak Med Assoc 2019; 69 (2):155–163.
116 [116] Raj GM, Mathaiyan J, Wyawahare M, Rao KS, Priyadarshini R. Genetic polymorphisms of multidrug and toxin extrusion proteins (MATE1 and MATE2) in South Indian population. Bioimpacts 2017; 7 (1):25–30.
117 [117] Raj GM, Mathaiyan J, Wyawahare M, Priyadarshini R. Lack of effect of the SLC47A1 and SLC47A2 gene polymorphisms on the glycemic response to metformin in type 2 diabetes mellitus patients. Drug Metab Pers Ther 2018; 33 (4):175–85.
118 [118] Phani NM, Vohra M, Kakar A, Adhikari P, Nagri SK, D'Souza SC, Umakanth S, Satyamoorthy K, Rai PS. Implication of critical pharmacokinetic gene variants on therapeutic response to metformin in Type 2