Muography. Группа авторовЧитать онлайн книгу.
T., Bejnordi, B. A., Setio, A. A. A., Ciompi, F., Ghafoorian, M., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
40 Lo Presti, D., Riggi, F., Ferlito, C., Bonanno, D. L., Bonanno, G., Gallo, G., et al. (2020). Muographic monitoring of the volcano‐tectonic evolution of Mount Etna. Scientific Reports, 10, 11351. https://doi.org/10.1038/s41598‐020‐68435‐y
41 McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133. https://doi.org/10.1007/BF02478259
42 Nagahara, S., & Miyamoto, S. (2018). Feasibility of three‐dimensional density tomography using dozens of muon radiographies and filtered back projection for volcanos. Geoscientific Instrumentation, Methods and Data Systems, 7, 307–316. https://doi.org/10.5194/gi‐7‐307‐2018
43 Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. Proceedings of the 27th International Conference on Machine Learning (ICML‐10), 807–814.
44 Newhall, C. G., & Hoblitt, R. P. (2002). Constructing event trees for volcanic crises. Bulletin of Volcanology, 64, 3–20. https://doi.org/10.1007/s004450100173
45 Nishiyama, R., Tanaka, Y., Okubo, S., Oshima, H., Tanaka, H. K. M., & Maekawa, T. (2014). Integrated processing of muon radiography and gravity anomaly data toward the realization of high‐resolution 3‐D density structural analysis of volcanoes: Case study of Showa‐Shinzan lava dome, Usu, Japan. Journal of Geophysical Research: Solid Earth, 119, 699–710. https://doi.org/10.1002/2013JB010234
46 Nomura, Y., Nemoto, M., Hayashi, N., Hanaoka, S., Murata, M., Yoshikawa, T., et al. (2020). Pilot study of eruption forecasting with muography using convolutional neural network. Scientific Reports, 10, 5272. https://doi.org/10.1038/s41598‐020‐62342‐y
47 Okubo, S., & Tanaka, H. K. M. (2012). Imaging the density profile of a volcano interior with cosmic‐ray muon radiography combined with classical gravimetry. Measurement Science and Technology, 23, 042001. https://doi.org/10.1088/0957‐0233/23/4/042001
48 Oláh, L., Barnaföldi, G. G., Hamar, G., Melegh, H. G., Surányi, G., & Varga, D. (2012). CCC‐based muon telescope for examination of natural caves. Geoscientific Instrumentation, Methods and Data Systems, 1, 229–234. https://doi.org/10.5194/gi‐1‐229‐2012
49 Oláh, L., Hamar, G., Miyamoto, S., Tanaka, H. K. M., & Varga, D. (2018a). The first prototype of an MWPC‐based borehole‐detector and its application for muography of an underground pillar. Geophysical Exploration, 71, 161–168. https://doi.org/10.3124/segj.71.161
50 Oláh, L. & Tanaka, H. K. M. (2021). Muography of magma intrusion beneath the active craters of Sakurajima Volcano. In: L. Oláh, H. K. M. Tanaka, D. Varga (Eds.), Muography: Exploring Earth’s Subsurface With Elementary Particles, Geophysical Monograph Series 270, Washington, DC: American Geophysical Union. (this volume)
51 Oláh, L., Tanaka, H. K. M., Hamar, G., & Varga, D. (2019a). Muographic observation of density variations in the vicinity of Minami‐dake crater of Sakurajima volcano. Journal of Disaster Research, 14, 701–712. https://doi.org/10.20965/jdr.2019.p0701
52 Oláh, L., Tanaka, H. K. M., Hamar, G., & Varga, D. (2019b). Plug formation imaged beneath the active craters of Sakurajima Volcano with muography. Geophysical Research Letters, 46, 10417–10424. https://doi.org/10.1029/2019GL084784
53 Oláh, L., Tanaka, H. K. M., Ohminato, T., & Varga, D. (2018b). High‐definition and low‐noise muography of the Sakurajima volcano with gaseous tracking detectors. Scientific Reports, 8, 3207. https://doi.org/10.1038/s41598‐018‐21423‐9
54 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit‐learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
55 Radovic, A., Williams, M., Rousseau, D., Kagan, M., Bonacorsi, D., Himmer, A., et al. (2018). Machine learning at the energy and intensity frontiers of particle physics. Nature, 560, 41–48. https://doi.org/10.1038/s41586‐018‐0361‐2
56 Reath, K., Ramsey, M., Dehn, J., & Webley, P. (2016). Predicting eruptions from precursory activity using remote sensing data hybridization. Journal of Volcanology and Geothermal Research, 321, 18–30. https://doi.org/10.1016/j.jvolgeores.2016.04.027
57 Ren, C. X., Peltier, A., Ferrazzini, V., Rouet‐Leduc, B., Johnson, P. A., & Brenguier, F. (2020). Machine learning reveals the seismic signature of eruptive behavior at Piton de la Fournaise Volcano. Geophysical Research Letters, 47, e2019GL085523. https://doi.org/10.1029/2019GL085523
58 Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386–408. https://doi.org/10.1037/h0042519
59 Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1, 206–215. https://doi.org/10.1038/s42256‐019‐0048‐x
60 Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back‐propagating errors. Nature, 323, 533–536. https://doi.org/10.1038/323533a0
61 Sahiner, B., Pezeshk, A., Hadjiiski, L. M., Wang, X., Drukker, K., Cha, K. H., et al. (2019). Deep learning in medical imaging and radiation therapy. Medical Physics, 46, 1–36. https://doi.org/10.1002/mp.13264
62 Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3, 210–229. https://doi.org/10.1147/rd.33.0210
63 Scarpetta, S., Giudicepietro, F., Ezin, E. C., Petrosino, S., Del Pezzo, E., Martini, M., & Marinaro, M. (2005). Automatic classification of seismic signals at Mt. Vesuvius Volcano, Italy, using neural networks. Bulletin of the Seismological Society of America, 95, 185–196. https://doi.org/10.1785/0120030075
64 Schouten, D., & Lendru, P. (2018). Muon tomography applied to a dense uranium deposit at the McArthur River Mine. Journal of Geophysical Research: Solid Earth, 123, 8637–8652. https://doi.org/10.1029/2018JB015626
65 Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems, 25, 2951–2959.
66 Sparks, R. (2003). Forecasting volcanic eruptions. Earth and Planetary Science Letters, 210, 1–15. https://doi.org/10.1016/S0012‐821X(03)00124‐9
67 Srivastava,