Trust-Based Communication Systems for Internet of Things Applications. Группа авторовЧитать онлайн книгу.
2011 International Conference on Emerging Trends in Electrical and Computer Technology, Nagercoil, India, 2011, pp. 1150-1156, doi: 10.1109/ICETECT.2011.5760293.
40. Neelakandan, S “Large scale optimization to minimize network traffic using MapReduce in big data applications”. International Conference on Computation of Power, Energy Information and Communication (ICCPEIC), pp. 193-199, April 2016. DOI : 10.1109/ICCPEIC.2016.7557196
41. Neelakandan, S & Paulraj, D 2020, ‘An Automated learning model of Conventional Neural Network based Sentiment Analysis on Twitter Data’, Journal of Computational and Theoretical Nano science. vol. 17, no. 5, pp. 2230-2236, May 2020. DOI : https://doi.org/10.1166/jctn.2020.8876.
42. Madhan E.S ,Neelakandan, S, R.Annamalai 2020, ‘A Novel Approach for Vehicle Type Classification and Speed Prediction Using Deep Learning’, Journal of Computational and Theoretical Nano science. vol. 17, no. 5, pp. 2237-2242, May 2020.DOI:10.1166/jctn.2020.8877
43. Akshat Agrawal, Rajesh Arora, Ranjana Arora, Prateek Agrawal, “Applications of Artificial Intelligence and Internet of Things for Detection and Future to Fight against COVID-19”, A book on Emerging Technologies for battling COVID-19- Applications and Innovations, Feb 2021, Springer.
44. Vishu Madaan, Aditya Roy, Charu Gupta, Prateek Agrawal, Anand Sharma, Christian Bologa, Radu Prodan, “XCOVNet: Chest X-ray Image Classification for COVID-19 Early Diagnosis using Convolution Neural Networks”, New Generation Computing, Springer, 2021.
45. Prateek Agrawal, Deepak Chaudhary, Vishu Madaan, Anatoliy Zabrovskiy, Radu Prodan, Dragi Kimovski, Christian Timmerer, “Automated Bank Cheque Verification Using Image Processing and Deep Learning Methods”, Multimedia tools and applications (MTAP), 80(1), pp. 1-32.
1 *Corresponding author: [email protected]
2 †Corresponding author: [email protected]
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.