Тренды развития медицинской науки: Мир, Россия, Москва. Елена Ивановна АксеноваЧитать онлайн книгу.
глобальном масштабе составляет 17 % всех лет, прожитых с инвалидностью, обусловленной разными причинами.
Учитывая нарастающие потребности, ВОЗ разработала инструмент для оценки потребностей в реабилитационных услугах WHO Rehabilitation Need Estimator и учредила инициативу «Реабилитация 2030: призыв к действиям» в целях привлечения внимания к острой неудовлетворенной потребности в реабилитационных услугах во всем мире и к важности укрепления систем здравоохранения в части предоставления реабилитационных услуг[74],[75].
Общеизвестно, что ортопедические процедуры охватывают весь спектр – от диагностики до хирургии, от имплантатов до устройств экзоскелета, а с технологической точки зрения – от биоматериалов до цифровых инноваций, улучшающих ортопедические результаты.
Хирурги-ортопеды находятся в авангарде новых процедур и технологий для оптимизации ухода за пациентами на основе научно-обоснованного подхода. Примеры включают в себя увеличение использования передовых сплавов, интерфейс опорных поверхностей, нанотехнологических покрытий, а также навигации и роботизированной коррекции для стабилизации основных заболеваний при дегенеративных изменениях и деформациях опорно-двигательного аппарата.
Область ортобиологии в настоящее время является очень перспективной. Недавно American Academy of Orthopaedic Surgeons (AAOS, США) объявила о стратегических инвестициях в биологические исследования и разработки, 3D-биопечать, развитие роботизированной техники, внедрение которой произведет революцию. Применение и дальнейшая разработка Finite element modeling будет совершенствоваться[76].
В свою очередь, разработанная Комитетом по устройствам, биопрепаратам и технологиям (DBT, США) Панель управления биологическими препаратами – Biologics Dashboard с доказательной базой биологического продукта будет продолжать развиваться и совершенствоваться[77],[78].
В области ортопедической хирургии имплантаты и инструменты для 3D-биопечати в будущем могут использоваться для лечения различных патологий, с которыми ранее было сложно справиться, применяя материалы, изготовленные из традиционного субтрактивного производства.
Технология 3D-биопечати быстро развивается, уже несколько исследователей работают над технологией печати индивидуальных человеческих тканей и органов. Предполагается, что биопечать будет распределять клетки, биоматериалы и поддерживающие их биологические факторы слой за слоем, образуя живые ткани и аналоги органов [16, 17]. 3D-продукты по-прежнему сталкиваются с множеством проблем, например, выращивание правильного количества функционирующих клеток, достижение соответствующей плотности клеток с сохранением жизнеспособности на протяжении всего процесса печати, но их будущий потенциал может революционизировать регенеративную медицину.
Параллельно развивается и четырехмерная (4D) печать – процесс, использующий интеллектуальные материалы для создания самоконфигурируемых белков, тканей и органов. Объекты с 4D-печатью могут самовосстанавливаться
74
WHO Rehabilitation Need Estimator. https://vizhub.healthdata.org/rehabilitation/
75
Rehabilitation 2030 Initiative. www.who.int/initiatives/rehabilitation-2030
76
Rise of the Machines: The Emergence of Robotics. https://webcache.googleusercontent.com/search?q=cache: PtVb41p-YRUJ: https://www.aaos.org/aaosnow/2021/jan/clinical/clinical01/+&cd=1&hl=ru&ct=clnk&gl=ru
77
AAOS Advances Biologics Initiative with Innovative Dashboard. www.prnewswire.com/news-releases/aaos-advances-biologics-initiative-with-innovative-dashboard-301152403.html
78
AAOS to navigate biologic-based interventions with new online tool. https://www.healio.com/news/ orthopedics/20201119/aaos-to-navigate-biologicbased-interventions-with-new-online-tool