Эротические рассказы

Невозможность второго рода. Невероятные поиски новой формы вещества. Пол СтейнхардтЧитать онлайн книгу.

Невозможность второго рода. Невероятные поиски новой формы вещества - Пол Стейнхардт


Скачать книгу
ребер куба, предсказанного Нельсоном и Тонером.

      Однако совершенно случайно мы открыли нечто даже более интересное. Разрабатывая количественный математический тест для проверки ориентации атомных связей в соответствии с кубической симметрией, мы поняли, что будет несложно адаптировать этот тест к поиску любых других возможных вращательных симметрий. Поэтому вдобавок мы использовали тест для количественной оценки каждой симметрии по степени выравнивания атомных связей вдоль различных направлений.

      К нашему огромному удивлению, именно запрещенная симметрия получила гораздо более высокую оценку, чем все остальные, – та самая невозможная симметрия икосаэдра, фигуры, изображенной ниже слева.

      Я знал, что некоторые слушатели в аудитории уже должны быть знакомы с икосаэдром, поскольку эта трехмерная фигура использовалась в качестве игральной кости (см. фото внизу справа) в популярной игре Dungeons & Dragons (“Подземелья и драконы”). Другие могли знать про него из курса биологии, поскольку такой формой обладают некоторые вирусы человека. А слушатели, имевшие склонность к геометрии, должны были распознать в нем одно из пяти платоновых тел – трехмерных фигур с одинаковыми гранями, ребрами одинаковой длины и одинаковыми углами.

      Важная особенность икосаэдра состоит в том, что, осматривая его со стороны любой из вершин, мы наблюдаем пятиугольную форму с симметрией пятого порядка. Ту самую симметрию пятого порядка, запрещенную для двумерных замощений и трехмерных кристаллов.

      Разумеется, нет ничего невозможного в использовании одной плитки в форме правильного пятиугольника. Одиночную плитку можно взять любой формы. Однако невозможно покрыть пол одними лишь правильными пятиугольниками, не оставляя зазоров. То же относится и к икосаэдру. Можно сделать отдельную трехмерную игральную кость в форме икосаэдра. Но вот заполнить пространство икосаэдрами так, чтобы между ними не осталось пустот и отверстий, уже не получится, как показано на фото выше.

      При таком числе вершин, каждая из которых обладает запрещенной симметрией пятого порядка, икосаэдр был прекрасно известен исследователям, изучавшим строение вещества, в качестве самой запретной симметрии в расположении атомов. Этот факт считался настолько фундаментальным, что часто излагался в первой главе учебников. И все же икосаэдрическая симметрия каким-то образом получила самую высокую оценку по выравниванию атомных связей в нашем компьютерном эксперименте.

      Строго говоря, наши результаты прямо не противоречили законам кристаллографии. Эти правила применимы только к макроскопическим фрагментам вещества, содержащим десятки тысяч атомов и более. Для намного меньших групп атомов, как те, что изучались в нашей модели, такого категорического запрета не существовало.

      В предельном случае маленького кластера, содержащего, например, лишь тринадцать одинаковых атомов золота, межатомные


Скачать книгу
Яндекс.Метрика