Завет «темных веков». Термины и концепты Освальда Шпенглера. Андрей СавельевЧитать онлайн книгу.
– там линия всегда имеет толщину).
Определенные правила раскраски множества позволяют создавать фантастические картины, поиск которых стал распространенным для математиков увлечением. Но это мир не только картинок, но и целое направление в математике со своими теоремами.
Если кому-то захочется посетить иные миры и запечатлеть их в зримых образах, то для этого не требуется космолета и многих лет путешествия в пространстве – достаточно заглянуть в множество Мандельброта. Трудно придумать что-то более наглядное для демонстрации вихрей становления. Видимо, несложно внести в формулу параметр времени, чтобы самоподобные вихри пришли в движение.
Может ли современный человек оценить самоподобные миры? Нет, для него это только курьез, привлекающий внимание своей наглядностью. Что-то вроде компьютерной графики – усложненной версии анимированных картинок – мультипликации. Между тем, именно в мире математики наглядно отражено то, что должно быть в мировоззрении культурного человека: иррациональное и трансцендентное. Самоподобию же еще предстоит обосновать философский концепт.
За пределами чисел
Широко известно высказывание выдающегося математика Леопольда Кронекера: «Бог создал целые числа, а все остальное это работа человека». Нецелые числа – это, в хорошем случае – число + оператор. Или два числа + оператор (например, операция деления двух целых чисел). Если мир дискретен, то, возможно, Бог создал только «0» и «1». А человеку дал сознание, чтобы он сначала сам поработал несколько тысячелетий калькулятором, а потом придумал компьютер. Который всегда точен: что считать и как считать ему задает человек. Если же человек не имеет точных данных и задает какую-то погрешность, то компьютер точно ее учитывает. Или указывает на неустойчивые решения, в которых с течением времени погрешность нарастает. Наконец, весьма «точно» расчет может запутать траекторию или фазовую диаграмму – до того, что приходится применять понятие «странного аттрактора».
Можно считать, что числовой счет всегда точен, а вот измерение всегда неточно. В измерении всегда есть погрешность. В том числе, мы не можем утверждать, что сумма углов треугольника точно равна 180 градусам. Поэтому и не можем сказать, евклидово ли наше пространство. Может быть, «немножко» неевклидово, но только здесь – где мы измеряем. А в другой части галактики это «немножко» окажется существенным. Или для микромира «немножко» создает большие неожиданности для исследователя. Ведь «много» или «мало» – это лишь наша оценка. То, что в одних ситуациях «мало», может быть «много» в других. Малое через время может стать большим или даже бесконечно большим.
Измеримость и счет возможны там, где есть пространство и есть время. То есть, вещные бытие и процесс. В пустом пространстве нет ни того, ни другого. Объект размером во Вселенную для нас непостижим в понятиях пространства и времени. Мы бытийствуем в нем, а не он в нас. Мы для него – пространство