Эротические рассказы

Криминальная личность. Почему примерный семьянин может оказаться опасным преступником. Стэнтон СаменоуЧитать онлайн книгу.

Криминальная личность. Почему примерный семьянин может оказаться опасным преступником - Стэнтон Саменоу


Скачать книгу
Post, March 28, 2013, B3.

      30

      George N. Thompson, «Psychopath», Archives of Criminal Psychody-namics 4, 1961, 4, 736–48.

      31

      C. R. Jeffrey, «Environmental Design and the Prevention of Be-havioral Disorders and Criminality», in Proceedings: Crime Prevention Through Environmental Design Workshop at Ohio State University, July 19–23, 1972.

      32

      Adrian Raine, The Anatomy of Violence (New York: Pantheon Books, 2013).

      33

      Sally Satel and Scott O. Lilienfeld, Brainwashed: The Seductive Appeal of Mindless Neuroscience (New York: Basic Books, 2013), 71.

      34

      David Deitch, «Presentation at the 132nd Congress of Corrections of the American Correctional Association” (Anaheim, CA: 2002, un-published).

      35

      Adam Gopnik, «Mindless: The New Neuroskeptics», The New Yorker, September 9, 2013.

      36

      Sarnoff A. Mednick et al., «Genetic Influences in Criminal Convic-tions: Evidence from Adoption Cohort», Science 224, 891–94.

      37

      David Cohen, Stranger in the Nest (New York: John Wiley & Sons, 1999), 4, 7.

      38

      Richard Trembley, «Terrible Twos Who Stay Terrible», nytimes.com, December 16, 2013.

      39

      William B. Carey, Understanding Your Child’s Temperament (New York: Macmillan, 1997), xxi.

      40

      Elaine Gunnison, «Psychological Theories and Research on Female Criminal Behavior», in Jacqueline B. Helfgott, ed., Criminal Psychology: Volume 1: Theory and Research (Santa Barbara: ABC–CLIO, 2013), 281.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx7/2wBDAQUFBQcGBw4ICA4eFBEUHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh7/wgARCAkCBdwDASIAAhEBAxEB/8QAHAABAAEFAQEAAAAAAAAAAAAAAAEDBAUGBwII/8QAGwEBAAIDAQEAAAAAAAAAAAAAAAECAwQFBgf/2gAMAwEAAhADEAAAAc3bdAHOfPSBzWOlyczdMk5k6aOZT0wcynpg5m6ZJzOeljmrpI5xPRhzuehyc889FHPI6IOduhyc7dEHPXQhz6egDn/jog53HRRzp0Uc7joo526IOdOiyc5jo45vqXSORRbCWVzaREeom0RPmSJ9QeQAATAJgJgAAAAAAAAAAAAAAAAAACSEwAACSHqCt5pV4U581SjHvxL281YZi0pX0WjN67cpz9ziblOzZLHdGmukR0danN56RMOaR0wcydNS5n66XJzOOmDmTpvqHMfXTYOa0+nTLlsdSHLnUZOYT1H1DlzqcnLfXUJOYz00c19dIHO/XQiefet/I1/YBIAHNfXj2dI4J3v5gOxc27tx06VwPr3PDt13rePRuKmTURB6ml6Pcx5PbxJ6RB6eZJnzJKBKBMBKBJBKBKJAAAJAmBKJABBIJpVdVhoGg3uOi3m2qU5hUp+kQmD3NKSJhIAAAAAAAAAAAAAAAAAAAAAAAAAAAD1PipDxMVSjMJVqRCBKvk8NMTkrmxuonI3eGvU7F0jjvQk9Knx7tjRMkEAkh5HoEeqUlSJ8I9KMlWJolWKPorT5ti892Nwmuo0C9Wl0SoUy7W9wFt5LtSqgAGoettDTNzHDr3sgoYLZBwKw+i5MQqB49ij79yKdSShU9iKVYUK0jzSrilVkUvFwKfuYKUVxCRSVQ8+hR9+w8exT9yHioKXr3JFKsKFX0It7mChcBT4/1LhkWwNB5hFv6Wr5TAmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6qUUBMnun7PCYEwKlWhVictVxOSi07no2bO4SzU0w+W9JY23zUmLyXoYTznRZVbmIYP1m5mKFrkIThPeYHnFZeEYW6yEHjF5cnE39eUW1pk5Mdk49JtaWQFpdhbLkU6gAAAAAAAYxQguEeCpNrUK0xSKy3qFRFAuFtcEz4pFeaNUmPFMuI8eyVMVECVMVDyelL0ezyenj0eiCZ8SekQenmSTyenmTBcC7Xwutpx11aTCYTHryAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkgAAE17erD1n8Qi1/X9VE9i3HmPQ5reLW5mPS2pF8tbklYeDJrf3CrOKiWWjxbF4xHoyhiTLRhbpGQecMnNsHky5WmMM9OBzaKs4a1NjYXNJMLBm1legAAAAAAGMAiQlB6AAABHqJAISITASISPL0ESPMyESISJ8+hT9epI8VBRqego1hRqyOc8a6XzGLKBNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwKt1Ru4mLfK2cT0Xq/E+5lO7latCneC2uJFrF3JR9+0LWbqZjx4rQm2m4C3uBbe60IijXJoVPZHjxWhNL36hHmZke/MpSAAAAAAAAGMWwuUeT2oeysimVFH2VC3Lhb1yUUispVQ8eSq8+g8QVUCVCSseT0pej2eT08ej0eT2o+z2imVVCqeikVY8ejhmiblpVZ8i0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAe7q0u4m7VaMTsXePn7shtbD5e1fTG2xm2LyZM4PyZ5Y14XDX0tgUrIyTXvaM8YBOfa1fGWmnrxsjW8wi8WOJTska5nz3GHsUbPOvZ9Pv1q8I2ljMmkAAAAAADGAASExIhIhIiQTEkJEJEEkJESCJAAAAEgkCJACJEU6tE4joHSOeVtQFqgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALu0qwv7enexbMd6+fu8mfktUkRICYRISlKAEhEiEiEwAEwQmCI9QQCfXj0TMSAAAAAAAYxQgry8nqbf2VSmVYoVD2Uiqo1iUUyqp1BPimVpp1Ao+S4efQUhVIJeJPR5PU0vZ6PJ7UfRUKZUUah6KRVt/fk5JzDrfJYmkJgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXoei/sbqyhsffPnjuUW3Vg83avpi7YzrF5MmcD4NgmxrQuGtzLZFKzMg1+oZ7zOEMzOAvDKeGvGwe9bzSLnxQxJnK2v548eLO0MvWw+YLZi/BnK2PyCZAAAAAABjAJAkAAAATEiEiEwJiQABEgAABMSCQAAAB59wcy453Ti8WxwmoAAAAzhg2TyxcdF41cHYuI9p5GYV03Yzh7K9DOTugYY1h124ONNv8ARpztujmlOnbacEbFtRzMzJhm47Kcpdj1M0htfQziLfhoLZ+jnEXYuUlm37IHMWcyhp7aOinEm/4o1V2P2cZAb3rhh3WdINdbdmTnC56Ac2bvJo7qOTONsx084w7VxYgAACpT9F9bekTd/SfzZ9JQzMxNoAATEwTAkmUEgCJCJAETEgAAER6HlIAkAAAAAAGGitIiRTn3I8VIKXuZJ8e/J5qefQifB69U/ZHmaZV9U/ZDyPc+ZDzJ6IJU5PZTKk29U9zHk9qXo9lMqKXs9FMqKVU1jhvcuKVtrgtUAAACt9A/PG4G7abic2aNtezXxmOX9a5KbTuVfFml2F/uZtvy/wBw58dVxmQ1Us8Pud+W/vF5OHFO4cO7ecM+kvm36Mlq+r7vhTH7lpm4ljivGfOd72sjOYPNYM6ByW62wo8s7Rw86PmsjkYcSzeyxLQd9myNg0/b+dQ3DY9G2iXBgdX6JzrXYWV30Hnp1fJ8o2Q5N23iP0zLB6NgM9DP8P7dxGVx13nfXzOfN30b85QtHRucyAATEwqUqtOWT+ivnTvkTtlXE5WY8+LegZH3ZXpRi2gv/VGpChFvEsrRqUCnNCoZGwv7A816FwVsdkrIoX9C6RSsMnQTZ5a2ujH22T8Frk6NcwdPMQi2yNOolMSAFOoFMVHj2FOT2DGTBMzBEgIkAATAkgkEEgAAAAAAEgTEgAAAExMGK4n3TidbaGLVAAAAAAnL4cZDHhfRZCpUtx6q0Bc1LIeqlEZKzohWohd2gurfyKlS3F7aeRVv8WK0Uh6yGNF1ahezYi967xUVMhixWURNWiAKtOBc0fAqeqImtQHr3SFaiDK4oXNsHSObgAAB78BkvpX5z+i4nMzEzAACYmCYHpCSYEokEEoEokAAAAIEoAESDA53XTRuu8o6ualZb1oxpnT6GbNEodI0k2LL6rtRzGn0Ac+joY55HQ5Odz0Mc7nocHPZ6DJz90Ac/dAg0GN/GgN/g0Gd9Ght8GiRvY0aN5Gjt3g0qdzGmNyg1Bt8Gr1tj9Gs+Np8mrzs3k1xsXk1/wB53yYicn4MVyzs/LInnCYmAAAAABeFm9XRZrnOGtPd4WDO2pjE5819f2AZesYJVuCyeros1TYTWlaqWj1eFiqVoWq8tZeWVrmDL8sGdxJQAZqDDK2XMEy1qWapdFjd3nazk2rdA5+GZ8mIL0sl1BbL20PLIUi0XXgoL6xAAABJExUhlezcv7qnDzsMzXXI2Yax52oak22TUJ2+TTvG6jSPG9DQ434c/joPo506LJzeOkyc1jpcnMXT0uYx1BDlsdTHK3VSeUeOtEapt/n0mEwRMScs6pyzqZHI+laWdHNdJ1jE9MMjNLHlQAAAgkgmYEoEoEwEgAAEEgAAEgEgAAATEgEc56NokODRUpyAAAAAd34R9EnJdtubY1jbsrjjF53H5CGqb7wPuctE2TH6vDrXz53fh8u94+tqBhOmcz63DkG6VKZeYLcNVlnsJi8oap1PB7YcX3TS+tQxPLO6cVltu8+axw7uXGOwmD1XpHNznwPpfkHSvn03nc9XtDp3LOh8KOlbdfa4a9t+mUTpnFuqaKdCq6fdnPOzco7gYTinbeCnddb3vUzM6/msKZ/E3tIjina+KAAAACpTuIdC7jybrkTItEgATEwTA9ISAkESAAAAABBEolJ5HpEgEJgw+ZiS0pZAMNmRpk7kLHTOg2JbKwiPQt/VYKdQW9T3Ip1RRqSIo3AoVknihdCjVkUvNcefQUlUPPoUfVQKdUWtapIiR5eg8+h5eoJp1JKFaR51PbsPD5qtsjjgJAAAAOic7GR2nRR0rL8eG+3HOkPfR+apZPqnGEOn69qKW2etRGc2zm4v9t0MbXvvFxu7SBf73zUZfNachvmqY5Ls9XiYzG+8qG0NXAHUOXh1PmdAdJ5szJ1Pm++cfLvrnGB1bl1Idi88fFToXORulnq46/ym2HSLDRhlLS2HQuegAAAAu7TJw7TuOE21OOyJMWdvlRY3sjGecrJb+6qGKnLJeLW9gxNTJhi8oMLeXw8YjNDDZKuLTGZ4YLOSMTa7ARiMtJOC8bALC/AACJAAAADHPA9oEqcns8nqacntAlAmASAAgkgkAAAEgTEgAABEkkEoE2V5TPmjC7fqESEwAAAAAPR5ZMYxNwWzJY0Li3CuKBclsm6LQvCzMoYtcUTyrSUE1y3e6pbpy5h3qqUFWCmubYGSMayWOIZK2LZN2WZeFm9VCir0SFxdGNL0smSxoZK2LYAAAAADNYXaYnvOdxuSQEpAAEJBM+UvUIPTyPR4Pan6PSKRWUKp6eKRcLe4ChSReLa5SWXgyC3uAAAAAAADGPQhIpqgefQ8T7EeKgpe/QihXko1gp0boUawUfFyPPoKCuHn0KM1ZFKqLapWAEJCJHmZClWFCtMEULgcM572zikTAmAAAAAGz6xs51qpplc5/wBt4z1KHjn1TKS3TjHedUgq0q0tA7xrVKHKvob556xLm3b7bDnD+la1v8MnyHuPDpbZebNXOIda5N340ZWolTGbfrBkMfjMpDKWt7cSsOJdu4iVe28N3o3rnt7cQ2vJ2uDloP0X869fOU9+x+Ghx/edH7RLUdD7VxqHYMV60CXnq2h7aarh9K6QbPleXb8cQ83VqAAAAANx07fInuS8qzGOyEiyt8sLK8kY7zk0KPqrBj5yEy8290MbUvhNhfwY65uBFlfiwu6go298LK9C2pXwtboLLzfihXAAAAAAADHKcFVEHpbyVymVJtqhVRTKil7PaLYulrckqdAu1vXJUPBdKdQLcXCIPU2/orFMqraoVQECSCZ8ySeT08eiUeTXfnb6d4FE6uJgAAAABmcMN3qaIL7p3Ix2rk2OHT+c2w6DU50No2Hmwyuw6SMjv3MBsHS+KDtvK8MN2uNBGS63xIZHceejddx4yN5q6CMp6xI6VzUGzayNqw2OHaLTkQyW2aCMjv8Ay8ZXZdFG96tjR1y94sMnvfMQyWNHarLkQAAAAAAdS5b2eJ6vPilMXC3uBNvSL1b1yVr5LyaXqHubGZXqKJXmw9l4iyL5jrguXmwMixt8VFCzMmxmSJY+0M2xeTJYWmZ5ZXoAAAAAABjgIkEiJAACJiQAAAAACEgkeXoImTxPoIkQkIkQ9CKdUUasjz4qi24t3HlkTx0TAAAA9Hld2ge65ans8Lu0CpTCp4IXloQqUwq+Dy9+ikn0eF1QPAC49Fq9yU1zQPJdlo9eQuqJTVqhaqopFUpK1QtVbyU0+ymn2U1TyeVTwQrUzyu7QAAAAAAue1cY7dE9Dp1fUxRqh481R59SKaoIlMKfr0Jj0l4mRMSISISISISIkAIkAAAAAAAAAMapiqQStvRXKZUW9QqFMqqFUktS6Wt0THigXU0K4UfBcqfslQguED0tvZXKJVmyqFyAgTCD1NOT2UCutq56RRK2sbFRh8qqlOQAADuvCu7wxPOcLVO82VTmcrjYI5qdx5v0/lh0XkPd9fhR0zdbeVexyd1DFcy6fcSy/Luz8aMv031izknXuRddMVqG+6Gc8B9I67ccuNp2vVtnhhcjxHvctK2Ct6hW59ttmZ7WNZ1qW69m+Y+7nNem8F6aatuu58MOy67m+Fndtd2DAmodGrZw4Vvei98MXyronPDoeE3GDlF7onaD1pm766eMLnZMJpHeuCgAAAE9G55lIt9B7J8x9xRtazvJgtqJkIt7glZQX00vR7WaF6ijKusPZewsS/jHXJcxGPMix18e1GyMoxeTJWFsZhjciSw3kzazvAAAAAAADHSAACJEJgSAACJAAAAAEgTEgEJAEJESkhIRIiQhMCJHzPgtu1GASAAdV5UO28vwQ7Fe8QGb6DyMdu5trQ6jzm0HSbjlw7PjOVjoui2g65ouujrOG5+M70Xjo2W708AdV0TCjeuh8C7FCrhuYpbV0Dio6dpuDHb8HywOq8qC9sulHRvm/fNDOq8s8jqmL5+M7ufLxlOocbG22uuDqmqasOgbFx0dp1HRBl6WNFXYdZG0auAAAEz5DsPHu4w6cJAJACJISBMSEpQSQkIkRIIkRIAAAAAAAAAAAY6KQrIBbei4PB6mj7PaaJWW9U9wtC7Wd4Jp0S6UK4UvBcKdQKEFy8j1Np6LkoFdY1S5AQJPJ7UvR7LYuVrcE6PQ4XDouK00XFuSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfQ/zz9Gw3FZ3cpW9EvptbklaeS9jxJ7mxQvZigXLG1JXxYl8xt0XEMeZCcfenvzTszIesdkTzFramUqY+/KcWVMynu2uQAAAAAADHAAAEgBAkAAAAAACYkAkAAACJCQAARMHB9C2HXgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD19UfLH1mXEgABIAAhIJRMgBIiREoJRIRIQJAAAAx+Q1o1vpPMumGpTru3mM2yhiDT9ixO1mZqhzGN6g0ZvMGjzuw0puk
Скачать книгу
Яндекс.Метрика