Цифровое моделирование на C#. Дмитрий ПавловЧитать онлайн книгу.
успешно свели задачу к предыдущей.
Построение графика функции, заданной параметрически
Построение графика такой функции во многом схоже с построением функции, заданной явно. Более того, явное задание функции может быть сведено к параметрическому, а именно:
y = f (x) => X=t, Y=f (t)
Обратное преобразование от параметрического к явному не всегда возможно. В целом, как уже было сказано, построение графика такой функции не несет в себе принципиально иного подхода. Немного изменятся лишь функции конвертации значений из обычной системы в экранную.
Как видим в формуле для X (преобразование по оси Y не претерпело изменений), величины A и B заменены на Xmin и Xmax соответственно.
Выбор N
График может занимать маленькую часть на экране монитора или весь экран, но в любом случае мы хотим чтобы он был гладким и приятным для восприятия. Возникает вопрос: сколько требуется точек, чтобы график выглядел хорошо? Вообще число точек должно быть пропорционально длине графика. Исходя из этого, можно предложить следующий метод. Изначально мы берем довольно много точек в обычной системе координат, например, 10000. Далее конвертируем эти точки в экранную систему, а затем формируем новую коллекцию точек по следующему алгоритму – добавляем первую точку, а следующую точку добавляем с условием, что она отстает от предыдущей не менее, чем на 4 (например) пикселя. Получившуюся коллекцию соединяем линией. При таком подходе мы обеспечиваем приемлемый вид графика вне зависимости от того, сколько места он занимает на экране.
Оптимизация построения
Следуя вышеизложенному алгоритму, можно построить график, где точки, по которым мы его строим, следуют друг за другом с равномерным шагом. Однако часто такой подход не является оптимальным с точки зрения производительности. Например, известно, что в окрестности нуля функции y=sin (x) и y=x ведут себя почти одинаково. То есть синус очень похож на прямую, а прямую можно построить всего по двум точкам. Идея оптимизации состоит в том, чтобы там, где график близок к прямой, можно удалить лишние точки без потери качества. Далее мы разберем простой алгоритм, который на основе кривизны графика сможет уменьшать количество точек для построения.
Пусть точки p1 и p2 уже принадлежат списку точек, по которым строится график в экранной системе координат. Точку p3 включаем в этот список, только если ее отклонение от прямой, задаваемой точками p1 и p2, больше некоторой величины d.
рис. 1.7
Определить расстояние от точки p3 (x3, y3) до прямой определяемой точками p1 (x1, y1) и p2 (x2, y2) можно по следующей формуле:
Такая простая модификация алгоритма построения позволяет уменьшить количество точек без потери качества отображения. Мы используем участки графика, где он близок к прямой, и на этих участках удаляем избыточные для построения точки.
На рисунке 1.8 мы видим график, построенный с равномерным шагом (без оптимизации).
рис. 1.8
Число