Всероссийский конкурс научно-исследовательских работ студентов и аспирантов в области химических наук и наук о материалах. Часть 1. Коллектив авторовЧитать онлайн книгу.
данной научной работы было получение Pt/C и PtxNi/C наноматериалов методом боргидридного синтеза и выяснение влияния природы и состава водно-органического растворителя на их состав, структуру, электрокаталитическую активность в реакции электровосстановлени якислорода и коррозионную стабильность в процессе эксплуатации для повышения функциональных характеристик и снижения стоимости данных материалов.
Методы исследования, используемые в работе: порошковая дифрактометрия, термогравиметрия, просвечивающая электронная микроскопия, рентгенофлуоресцентный анализ, метод низкотемпературной адсорбции-десорбции азота (БЭТ, БДХ), методы вольтамперометрии на стационарном и вращающемся дисковом электроде.
Основные результаты научного исследования: Показана принципиальная возможность управления структурой каталитических материалов посредством вариации состава двухкомпонентного растворителя и изменения природы неводного компонента. Установлено, что для Pt/C катализаторов средний диаметр наночастиц зависит от содержания ДМСО в растворителе. При этом дисперсия распределения частиц по размерам уменьшается с увеличением объемной доли диметилсульфоксида в растворе. Сравнение каталитической активности в реакции восстановления кислорода полученных материалов показала, что некоторые из них превосходят по активностью коммерческие Pt/C материала(E – TEC 20 и E – TEC 40), что подтвердило высокое качество синтезированных катализаторов.
ОСОБЕННОСТИ ЭЛЕКТРОХИМИЧЕСКОГО РАСТВОРЕНИЯ СТАЛИ СТ.3 В СЕРНОКИСЛЫХ СРЕДАХ
Цель научной работы: исследование электрохимического и коррозионного поведения стали Ст.3 в сернокислых растворах.
Методы исследования, использованные в работе: металлография, гравиметрия, потенциометрия, потенциодинамический метод построения поляризационных кривых, построение диаграмм электрохимического равновесия.
Основные результаты научного исследования. Определены зависимости скорости коррозии стали Ст.3 от концентрации (в диапазоне 5 – 90 %) и температуры (25, 40, 60, 80ºС) растворов серной кислоты. Показано, что с увеличением концентрации H2SO4 до значений 50 – 60 % скорость коррозии возрастае ти снижается до минимума при концентрации 70 %. С увеличением температуры интенсивность растворения стали возрастае.т Согласно расчетам эффективной энергии активации режим протекания процесса в 70 % H2SO4 приближается к диффузионному. При визуальном и металлографическом исследовании образцов стали, выдержанных в кислоте данной концентрации обнаружено образование плотной пленки продуктов коррозии черного цвета. Стационарные потенциалы растворения стали Ст.3 в растворах H2SO4 приходятся на область устойчивости сероводорода в системе H2SO4 – H2O. Таким образом, при анализе электрохимического поведения стали необходимо учитывать наряду с водородным электродом катодную реакцию: HSO4– + 9H+ + 8e– = H2Sадс. + 4H2O.
Согласно