Эротические рассказы

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса. Марио ЛивиоЧитать онлайн книгу.

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио


Скачать книгу
математик сэр Майкл Атья, получивший Филдсовскую медаль в 1966 году и Абелевскую премию в 2004 году, писал рецензию на книгу, в которой Конн излагал свои идеи, то заметил следующее (Atiyah 1995).

      Любой математик не может не сочувствовать Конну. Все мы интуитивно чувствуем, что целые числа или, скажем, окружности и в самом деле существуют в некоем абстрактном смысле и платоновское мировоззрение (о нем мы подробно поговорим в главе 2. – М. Л.) необычайно соблазнительно. Однако как его отстоять? Трудно представить себе, чтобы во Вселенной возникла и развилась геометрия, будь Вселенная одномерной или даже дискретной. Может показаться, что с целыми числами мы чувствуем себя увереннее и что счет – это и в самом деле нечто существующее изначально. Однако представим себе, что разумом наделено не человечество, а какая-нибудь огромная одинокая медуза в глубинах Тихого океана. Все ее сенсорные данные определялись бы движением, температурой и давлением. Поскольку все это – чистейший континуум, в такой обстановке не может появиться ничего дискретного, и медузе нечего было бы считать.

      Поэтому Атья считает, что «человек создал (курсив мой. – М. Л.) математику посредством идеализации и абстрагирования элементов физического мира». Той же точки зрения придерживаются и ингвист Джордж Лакофф и психолог Рафаэль Нуньес. В своей книге «Откуда взялась математика» («Where Mathematics Comes From») они приходят к такому выводу: «Математика – естественная составляющая человеческого бытия. Она возникает из нашего тела, нашего мозга, нашего повседневного опыта взаимодействия с миром» (Lakoff and Núñez 2000).

      Точка зрения Атья, Лакоффа и Нуньеса затрагивает еще один интересный вопрос. Если математика – это целиком и полностью человеческое изобретение, универсальна ли она? Иначе говоря, если существуют внеземные цивилизации, будет ли их математика такой же, как наша? Карл Саган (1934–1996) полагал, что ответ на последний вопрос утвердительный. В своей книге «Космос» Саган, в частности, размышлял о том, какого рода сигналы передавала бы в космос разумная цивилизация, и писал: «Крайне маловероятно, чтобы какой-нибудь естественный физический процесс генерировал радиосообщение, содержащее только простые числа. Получив подобное сообщение, мы можем заключить, что где-то есть цивилизация, которая любит простые числа (пер. А. Сергеева)». Но можно ли утверждать это с уверенностью? Недавно физик и математик Стивен Вольфрам в своей книге «Наука нового типа» («A New Kind of Science») утверждал, что так называемая «наша математика», вероятно, соответствует лишь одному из богатейшего ассортимента «вкусов» математики (Wolfram 2002). Например, вместо того, чтобы описывать природу при помощи законов, выраженных в виде математических уравнений, мы могли бы пользоваться законами иного типа, воплощенными в виде простых компьютерных программ. Более того, некоторые космологи в последнее время стали обсуждать гипотезу, согласно которой наша Вселенная – всего лишь составная часть множественной Вселенной или мультиверса, огромного ансамбля вселенных. Если множественная


Скачать книгу
Яндекс.Метрика