Эротические рассказы

Однолетние цветы рукотворной красоты. Галина КизимаЧитать онлайн книгу.

Однолетние цветы рукотворной красоты - Галина Кизима


Скачать книгу
прелестные подушки 20–40 см высотой. Обильно цветет мелкими цветками, чаще синей или голубой окраски, но есть и белая, лиловая и розовая расцветки. Посев на рассаду следует делать в конце марта на снег. Всходы появляются примерно через 10 дней. Зацветает Лобелия чрез 70–75 дней после всходов. Пересадку в грунт на место можно делать во второй половине мая. Цветет обильно и длительно.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAIBAQIBAQICAgICAgICAwUDAwMDAwYEBAMFBwYHBwcGBwcICQsJCAgKCAcHCg0KCgsMDAwMBwkODw0MDgsMDAz/2wBDAQICAgMDAwYDAwYMCAcIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAz/wAARCAHBARsDAREAAhEBAxEB/8QAHgAAAQUBAQEBAQAAAAAAAAAACAAEBQYHCQEDCgL/xABzEAAABAMEBAYHDQ8MEAUEAwADBAUGAAcTAggUIwEVM0MJERIWJFMXIiU0RGNzITI1QVR0dYOTo7O08AoYMThCUVJhYmRygrLD0iYoOXZ3gZKUlaKx0xonKTY3RVVXZXGEhZGktcRWocLi4xlGR/RmwfP/xAAdAQABBQEBAQEAAAAAAAAAAAAEAAMFBgcCAQgJ/8QAWREAAAUBAwULBggJCgYCAwEAAAECAwQFBhESEyIxUfAHFCEyQWFxobHB0RUjM0KB4QgkNlKDkbPxFmJygpOywtLTFyUmNDVDU5KiwxhUVWPi40RFc3Sko//aAAwDAQACEQMRAD8AMDOxsfSCFj5vWgLB/fEGoWAloC49H147xhu4gs6FjCuILB/LjjxOFoctYVZyeQN7RUX7cPktbic0w0TzTh5RTt3sCwfy44aZkpd4ocZkX/F4ejbWFg/lxwW276oH3sklZRvSFm+qIbxgu4gsH8uOFjCuIN831RCxhjAoOcML91CxhYFBvhhfuoWMLAoLDC/dQsYWBQ8zoIxhYFBvhBftwsYWBQWEF+3HhSUN+bUG1paNpLj2kLCC/bjpDKG1ZQOLkNG6Tb2gN+Ma19CHMiok4bw3mLXlG1dQWEF+3DeSSacmGVqYNeJOkLCi2frx5kL828dOyWG1tRU8N1/WFneqO+I83tgzR4xiadcTlbiO7kCsk4fWvJ5rY7ZZadT5xd/sCww319MdJLEnC4BXmEsJw38Bj+cGLataNOI+hDbqjbQtXQCUYojCI7yvNIv6+jh0mPeSNytOn68NLWam0L6R7mkhcdv0bl3Vw9Oke4QX7cFtSG1lhDOFptPxdWnblCwopX/+4YRgaPEoEtGuNxj0hvnQ4ha+K9t9QajN5R1KYZ6duUOMIL9uOVrWWa1t9Y9NxKX1NzFaNuQLCC/bjp4kupzQA1JS5mqCwgv24ajLwZoKZcfRmpCwo31rUc4w5gCzsZ3x+/CxhYA4NExcH3xHS15gIjIDfVMQOMEYBcMLgzURyFidWgOMH8uODULAS0BYP5ccOYw3gCwfy44WMLAM3vhzXVrvd3tQdSCXSR1MufKkgcaWrA07Yvb5cVO11QW035vSN8+DfYyBaG0rlPq3EJN/LqM/VNPNyjEECe9694ICerpsuWgZS1YAI6UOasK9ICt7MTvqKFTanVHjzf2B9GVbcz3G6dPch1Jy4y5pX7Kz7QU0vyrhV5dt8Zyp5Mg5zBAEZVKEtiAZ/E5caZZuWSmMStuwfG26FGpzdoXY9F4nt1Xlx+HQHJxJ9MbIixsO+dGcMvNNMLV6/AFqeFlQRgHppHwcLKhYA21THuMwxgIeYUbfQsZhYCHuD+XHCxmFgILC4P04WMwsBBGksXC1sPk9bD2VzsA9yQWD+XHHeMeYCGP3r7wi5d9cUtyaOXSRwXafGAUMaWrDUrApYPL90jOrU1tUachtO2jmH1huCbksK1NGkuSuO2ZEWn1r9Sk6hMX0p8FLq7HMnAS5Mw4T5gYkiFR84HtNoYE8UHHlqbVqiwCcTto5hVdwLcWTamsyUyuI2RH9d+pxJ8gjzUwnuw7nSw9nUntznoQIa0CKAp1EEgFbFDsBhjh8vaxEP1qqN0jfzh9mu7V3Cyfye2NqG6SVDpa8wj4eB3kaxHxlkennFgu9zCNzskK13gvapIDHy5sdQoFqJMuECaEzKfkw4slFrizou/HNPvu1Cmbsu57Ah20RZ+k6TItek0kr1lavxhg8hb/jhnbemb7W1Q3SDRXlcYAILV3TMLmU8/l7WKjT7US1zVJ6dXgPqG3XwabM0axTlSi8LmFF3pNKlEXK6ZcuoWicl4579nhQlvKtrpK8tIIFdVUFTOw4u88/bsBhhWKm8hVG1UtEvJ+GroGebn+4nYah2cRaS2jtyFmZFwPfPNJeicP9UR5W9JMeScwm+jzgZ7dARXKYoBKqXSBGL7upk27YYnI6qOmbRTGakltxXZq6BY524jueWooUqqWPXfki1P6fpXE6tRi8T6nwuSTvMyvZJNPbphMdo4IKqKdK1hu/8LlicuDbQ2gmKfSlvu8Bnu43uMUat2LmVKrK4WvytZ/NcLUXIY+97qfHzsMpzCwSLkz60fP4JKKHc4H7McQQP7gOJe21oXoyWkp5b9XJdzCjfB93JIVralMTUFeZTh18pn81aVaCEBdvvTLk4LuUyHgpI7dAWmXW1fQLCgg96iDZgfLiEjWokHEcVqu1eA2rdG3EbPUe2FKp7PoXcV/pNRa3DPl1ir3Q77i3PicXNV1J7cIY8gNq8UkVFBGxIGZT8/b8+GHDNLtWtcpKduwSm7T8Huz9EsumpQT4dP8AedPK4fYNYvHTWGu9yRWHUCWJjqZcwCSTwjucCYMjC/1daLba+vqjxUqTto5h83fB93PKdbC03k+QfASTPl1HqWnVrFHuYXpHBecNPAmvJ7dIaiIFDpXVZYUEapbFp/Z24hrGWlkTZmTlaubuIhrvwh9xajWPocaoUtXCZqL1+b5ziuwSF7y8aoXb2619Qp6QruFynxso6WFG6LY8XYt2PPiCR7bO00iFMycXVzaucjFV+DTuP0i2MKZOqh8VSS9b8f5riewWC6fO4W8hJvXykXSSC0QPjElAIkWog/ZgCfVxNWNrypjHDt1EK/8ACO3LYtj6ullnlIteotalDQMH8uOLohd7o+bJLTpKSpIWD0R5jBuBIcaphYwsCQtUx6teYCoyB8QEnK0RAZUFYBdsH8uOBokq9Kw5IZykgnpCbyX7NFxcgFeWMs3leQcEwFLssPls6pcxtLKFCVKjSsRQYcPKqWPrm0NpqNZCLDjuQ8ZmSy9IsuLdzK+cLh85c7P8980feosnkR753Z4imu7r1GbYw+Sv/wDdf8MTEu7p7hYb2T1I5Nh8rxIgYrip52lRP+UjzyI987qLxEZabdKo0+l5NNK4f/2FfukK/wAKUVwNy1Y0f6XT/hRIj7YL+Kp6fAXn4JiP6aH+Qf6qhqF3Er+tllv+1FP+KhxKWaX/ADaMv3cEf05m/lF+oQyO8i1F503htXuucxWU8uACAI6UUTHEEnKJ8XiDzLYGnzNpW2kUarPX1Hz231D6M3NHaVZ6wqKjR4O+JJ6c9aNLlx8fEnRqIRN097OBt3rXvKs4+Dkw2sQSNdJSqdM4sXwa3lidvuzMOWUeSirqyWruD+7hZWnVOxDNqIkbe08zK/ONzgxEky4TJvi8N+EQDsSX5Pm//MhlI8z3ay0ZBTwToQRIyKMDsiQdMMOvY6yI55OXqi+nuE1EqlBsluY02qTI1+PER5yi4cqZHoJXKeq4Wi4aqPBFvYTgZLje7jehNmABAhDKhoUbNsGg8ynbt26cO0Y8Ek0gfdpOhSbKU2rU2Ncbhr9ZfN87o1Cn3e70jgZ/B7u93rCwrLzn5zDIjfFOmRTY2JGKlqdPl9XnCQJTKvgirZ17ahYLebnEKobocDJ+ijX6/XbL8Yj1axM3F5hvdau3zvHdLocKgstqsCCMdUxRhSAlhPO7MS1s8wODqZ5uAvblAO6xQKdDtTQorfFdU7r5CbPWYl7oV61u2LpyeI7pjo9l2kC6tV0Kaj3R82pQ89meTh+JV2k05baduHoFc3WtyibP3QmKlT4/xdGG/OL5pa1ErTzD73OXY+5g8H4oLBJX1s+bJ9QATz7gUckv3vmCDi/YB1hIEgm+VJW4nu1gLdLoNGd3TqezOj5iCVoUv/CvuzTv0kM2eaApsSQ6g+Uy8ssLsyUsAE6oECTqCNlNqHYth2OTbiMdfIoubtwjXqGbNTrCaJKp2CnXGRedv0IM+S5zjaz6gUcnXULNSSLOchwuTAOryQCdNUNjV2Ynwca5ZGU95PSaR8A7qtAj0C1sqnxSwINRYdJ8FxHymo+U9JgZ+FUOCo6tJ84TL1xi59QHCC9UC2BSUUa3UtTc3KJH1t8ESEkqbVYqtDmSv+pwQ121xC3wL96u5JkAYFaQS4o6U1RywoIVoUAXvftuo2njYgLPYZk3E9wC6bpSX7HbnaWbP55OGZHoL1tOfi18moERfS0/rRZkVs/uR/3RaNBtk2lVFRtyj5N+DYyiTbyO2rSeM/8AKk1dwHhYmWbaPBfS/bab0hwTEMGkUoEDtsNrASv/AA8kOKGVS+JJZSPsH8FvKW61PtZM9HGJv61ME3yGR8h+qfeHBOTZS73wj0j2qU/xQkFcWL6oM28bXE90gViElqelLmkx67alVpLA1GsJ5CLqV0J1agUDuLAsFvuh1oTIJrrmMEKwoRItRUVfNDy7YgNip4yNIqkNqlMlMi+k213l1D4vsZLqlrJ8Sg1xeCNnHfcg+Q1ephVpL5wD6dk21qfc+JcIUzWwalM1yB+v00ua6RUFD0ibbydOM8l1aRJkIyyezwH2zue2Kh2SoVRmWfexrMkHoMuFN93HWovWMxpF94qKav8Akh9I+2x5WqF4zXUSFokpJ9GEZ5uEk7HsBUkuaXLiP6zIg4NJJS9pwgxgmN09lyeIDVepMHv/ANn3otDNUmeUZq3Ojs9gk7LxU7n25oyy56aSo7y/IdP8suL0adZCkXGfpDZ8Dfe43/TzMD0HzVOcFj3Wmrt0GgR1aCN3rSnwGfN9ujStu4ygnAkeapILtNETfkrAoYwH56A0+aS25qMxozspMi0FSs2rlS31t4j7fnDeL7iYDOy8FKeVaMYxKYvGAlo2KB6mG84J/FgxhIsNoZPlOc0pPIR9nsGAbgFl/wCT6ztRrD2tv9c0618qi5A3uLpIRO9JP4EoXoEi44wAQXiw1WHbItpizDUnUOfhOE7M3P4jcj11X/6yPkHpwr2bOFKRye3S5WEKwoXjSuf8dMwLNjtTK2pTm3AO6OSbFbjJsxSvW5hV7TeK/Tj5A4utldMkr7k0Jb97pi93USgvwOlB/wDLCDQXZZ5EaeSQDuyQ1Wl3MYFSbkXm1eoywXeth/F1ajGwTYlOuTH1fqd8K7Sw9argiwXSI1GrJU7dhHyBYC2lGoGWcqkPK4rv7xSdF/zSVrFP+dae/wDnpfX8VCiB8gzf8b/QXiNI/last/0P/wDqc/dHw+daev8Anpd/8VCj3yBN/wAb/QXiF/K1Zb/of/8AU5+6Je5y4lZ+SHTzi8oa3VMeaAxY+2McgWnDll5y94Ne3tMQu73ZmkUS1slNJK7gb+d/ho+cZjZ0NJ7lhfjflaY7lTzyqhkbDDDjZLd4xiw4PpX0fNjxLWTSsSbzWWyaW+C68YPcNK/4WP2+qH5uIGzjl+P2Ddt3JSn94KU9ddlfV/8AxjeMH8uOLVlmPndowBTWUzQ4KlftR4b7GvtHansCcmoDfwsBP9ZGsez6f+cil2wX8VLp8B9TfBNR/TRX5B/qrGsXcSeMuyy3/ain/FQ4lLNL/m0Zju3o/pzN/KL9UgF8wjUvmHwjs0Dk8keyfSz+cgCjlxTZTd4cSnY8XGcPPY6ke+Ofs5h9qUmPaCbuaMqsKWBwrr+KfrcPpuDQJa44rMexwhD/ADjJTziSy+aJo6UCGLUcqxhhBKYdr3uHqK9gqx7324BG7sFErtQ3MmYtWO+ZeV/AjTlCv4pkji7Xi1XLXYUvCX8pwTIbZc5zRPpAIAQo5ajm2xS1P4tB1mk5eetSttIpu7NTnaFuZUqhvKvMr+S71iXz69YsF0b9kovIf6/+7Dhpk8nNWkO7qz6v5NqRnXXX/rkB+4MJjKE752pCacz2lLU+M5xgt0YOiUwS/wAHEZTafjWahrG7rX4VkbP+UlekeMiv4eQy5lFoPUQ2G6d/gyvX+y6r8UUYNpj+NpccUfdOKMdes485pQb2vU0I+4zdPlvNS5GnuRea5NXWjGtu6A5kWtk1KfnLcEQqe0umrcTtwgLdR3U6zA3S49Hp6/i6sN/AjlQR+sk1aecVCWKSoOTgXXBq3pA2vhhzdD1NYFJCDwHBefXSVtp24RabQrgL3X6f5QXmGSuQ9ORO7i8933CrPd2Xdle5yXTUFHOdk0AgVqi4Y1WLnbFOuIIPs6Uey5Ecoeb36xbaPR7eFbrflQX/ADZevDwM6MmZFxTyvGu0l1A0LnJPGXOZX+wIPwokaFZeasoGaPgP4RcbHbqTKe4l5Xf5C1c94wfhStOEmZI/1+a+NEog7W4CmE2rl9w+kPgkEo6NW08pkzd9Tos/CVXb1A84DE32ViiDzaRjGqFDamAgRcsx5UDeeKiGtBS1QopSmeXbWYhfg37qrD+WsbaDOMzMuUtN95ZievEPg+LwiTec4OCYDkJ4MBTLpAJJbTwP8XmsUW96E3cOTK2qXSCTtp6B5ZPcsdsnutQlJ4hm6fsU04Xz1cihi3BlsVQnRORIX1HRWb8piHQAtzihhRLYHvggwkRVl4O+pBNqG1fCStEmzFAkqi8C5eFJ/mmWslcnQNRnFowfC1SnB3+AT8r+OwXXm1P1wnm9HuGfbnKEluMTG1chkZ9BvErsDZ63unBdXvivkpMYd2q7FX89ACAzgSAVsUMYMQAO1yA/Fw/vt+HUcpM4W/dzcOkdM7l1Jt5YGKmhngkpNy87lH/eGXrrQnR2igXurzSTfw5nsSW7fcR87rfG1TpYKt24VPLDsW7eV1kB1WsR5L6Mj3+Asm4/uSyty+nTZloHMSVYTLgItGL5inD5RP8ACxOoVi3gpcK6cPxnElIrFRfGAmhKYkcV/EiQhQd+De21Ps7NSnhQtSOo136huPB7ydFlVduLqSj6NPWs4VCttqVsLI97zP8AaYsNm6UnerjyubbSME3e7ZqqluWI7P8AV2TIjLpw4uQlaS5+YYPcPonLhs+PrYcb4gJEJSU46a97O0fQ+6+rK7olBSnS5lf9KSMXC7fLHswcFWoIIOedMDqw5T10CKGMH8HEjDgb4ppuavEUbdKtWuhbrSHk6H8F/wCiQi7QfcKfwVLTUJjTYWXsoj4/Q0
Скачать книгу
Яндекс.Метрика