Кто изобрел современную физику? От маятника Галилея до квантовой гравитации. Геннадий ГореликЧитать онлайн книгу.
хватало точности. А чтобы придумать эксперимент с участием спутников Юпитера, ему надо было оставить физику, стать астрономом-наблюдателем и не менее года вести наблюдения, зачем-то уточняя уже измеренные им периоды спутников. Это кажется невероятным. Так что скорость света открыть он не мог, хоть и был предубежден, что она конечна.
Галилей был также предубежден, что никакого планетного притяжения нет. Но это не значит, что ясен ответ на вопрос:
Мог ли Галилей открыть закон всемирного тяготения?
Выдающийся физик и веселый человек Ричард Фейнман так изложил предысторию закона гравитации:
Во времена Кеплера некоторые считали, что планеты движутся вокруг Солнца, потому что невидимые ангелы толкают их вдоль орбиты. Это не так уж далеко от истины: ангелы толкают планеты, но не вдоль, а поперек орбиты, в направлении к ее центру.
Стремясь к краткости, Фейнман опустил важный промежуточный этап. Галилей обходился вовсе без ангелов, считая круговое движение планеты вокруг Солнца движением естественным, свободным. Вопрос о размерах орбит и о скоростях планет оставался открытым, но Галилей видел массу открытых вопросов, что его не огорчало и не смущало, а лишь раззадоривало. Как и Кеплер, Галилей верил, что другие планеты по своей природе подобны Земле, и укрепил свою веру, увидев в телескоп гористую поверхность Луны. Его вера давала надежду, что изучение законов природы на Земле поможет понять и законы планетных движений.
На Земле Галилей открыл закон свободного падения, а также закон движения тела, брошенного под углом к горизонту. Траектория такого движения, как знают ныне школьники, – парабола. Это свое открытие Галилей долго не публиковал. Он понимал, что результат получен в приближении “плоской Земли”: парабола тем точнее описывает траекторию, чем ее размер меньше по сравнению с радиусом Земли, то есть чем меньше начальная скорость, или же чем меньшую часть траектории рассматривать. Он не знал, какова форма траектории в случае “большого движения”, когда начальная скорость достаточно велика, и уже нельзя пренебречь сферичностью Земли.
Трудность была теоретической, и эксперимент не мог помочь: чтобы в лаборатории заметить сферичность Земли, размеры лаборатории должны быть сравнимы с радиусом Земли. Галилей мог, однако, воспользоваться мысленным экспериментом, в чем был большой мастак. Надо было лишь придумать вопрос для мысленного экспериментатора.
Например, такой. Если бросить шар в горизонтальном направлении с небольшой скоростью, он упадет на землю поблизости, двигаясь по крутой параболе. Если начальную скорость увеличить, парабола станет более пологой. А с какой скоростью надо бросить шар, чтобы, падая, он оставался на одном и том же удалении от поверхности Земли, уходящей “вниз” из-за своей сферичности?
Эту задачу Галилей мог решить, пользуясь математикой не сложнее теоремы Пифагора, зная радиус Земли R и ускорение свободного