Эротические рассказы

Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния. Дэвид СамптерЧитать онлайн книгу.

Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния - Дэвид Самптер


Скачать книгу
с нами сводится к случайности. Многие болезни можно предотвратить, если мы выберем здоровый образ жизни, а пропущенные голы часто случаются из-за плохой защиты. Но осознание того, что многое из происходящего с нами несет случайный характер, иногда может помочь смириться с вызовами, которые бросает нам жизнь. Не все в жизни можно предсказать.

      Объясняется случайностью

      Именно непредсказуемость футбольного матча от одной минуты к другой и создает распределение Пуассона по прошествии 90 минут. Мы знаем среднее количество голов, забитых в матче, но их время непредсказуемо. Как итог – некоторые результаты становятся намного более вероятными, чем другие. Парадокс здесь заключается в том, что эти итоги объясняются случайностью. Тот факт, что голы случаются произвольно во времени, делают возможным предсказание закономерности результатов. Эту идею очень сложно понять, но это правда. Факт случайности какого-либо события помогает нам объяснить это и предугадать, как часто оно будет происходить. Случайность позволяет нам делать всевозможные прогнозы о будущем.

      Математики используют этот трюк постоянно. В начале нового футбольного сезона, в преддверии чемпионата мира или премии «Оскар» в газетах часто пишут о «гениальном» математике, который предсказал вероятность победы определенных команд или фильмов. Эти прогнозы зачастую выглядят обоснованными, а иногда они оказываются и верными. Но откуда они берутся?

      Я открою вам секрет. Эти гении обычно используют распределение Пуассона и немного справочной информации о командах или фильмах. Для моделирования результатов в футбольных матчах используется такая хитрость – рассчитать показатели забитых и пропущенных голов для каждой команды и затем симулировать матчи между ними. Например, в Премьер-лиге сезона-2012/13 «Арсенал» забивал в среднем 2,47 мяча в домашних играх и 1,32 в матчах на выезде. Пропускала команда 1,21 гола дома и 0,74 на выезде. Собирая такую статистику для каждой команды, а затем моделируя игры между всеми парами, мы можем создавать прогнозы на предстоящий сезон. Пример такого предсказания приведен в таблице 1.1, где я использовал данные из сезона-2012/13 и модель, чтобы спрогнозировать четверку лучших в сезоне-2013/14[9].

      Таблица 1.1

      Лучшие четыре клуба после первой симуляции сезона-2013/14, основанной на коэффициенте забитых голов в течение сезона-2012/13

      Этот прогноз не слишком разошелся с тем, что было на самом деле. В реальности «Манчестер Сити» стал чемпионом, оторвавшись на два очка от «Ливерпуля», а «Челси» занял третье место. Но эта таблица – лишь один из многих вариантов четверки, который я получал при нажатии кнопки «Запустить» на компьютере. Каждый раз, когда я запускаю симуляцию, команды встречаются друг с другом дома и на выезде, счет матча выбирается случайным образом на основе средних показателей забитых и пропущенных голов, и я составляю таблицу на основе результатов. Каждый запуск дает разные результаты, иногда совсем разные.


Скачать книгу

<p>9</p>

В этой модели я использую четыре параметра для каждой команды: среднее число забитых голов дома (SH), пропущенных дома(CH), забитых(SA) и пропущенных(CA) на выезде. Они оцениваются по голам, забитым в сезоне-2012/13. Когда две команды встречаются в лиге в моем моделированном сезоне-2013/14, я сначала генерирую цели для хозяев. Они распределены по Пуассону со средним значением, равным 1/2 (SH + CA), которое учитывает атакующую силу хозяев и оборону гостей. Голы гостей распределены по Пуассону со средним значением, равным 1/2 (CH + SA). Чтобы получить полный сезон, процедура повторяется для всех матчей.

Яндекс.Метрика