Эротические рассказы

Эволюция физики. Леопольд ИнфельдЧитать онлайн книгу.

Эволюция физики - Леопольд Инфельд


Скачать книгу
Практически мы, конечно, никогда не можем полностью освободить тело от внешних влияний. Мы можем только сделать предположение: «что должно произойти, если…» и судить об уместности нашего предположения с помощью заключений, которые можно из него сделать, и проверки согласия этих заключений с экспериментом.

      Рис. 8.

      Вектор на следующем рисунке указывает предполагаемое направление равномерного движения в случае, если бы все внешние силы исчезли. Это так называемое тангенциальное или касательное направление. Если смотреть на движущуюся частицу через микроскоп, то можно увидеть очень небольшую часть ее пути, представляющуюся в виде небольшого, едва искривленного отрезка. Касательная линия является его продолжением. Нарисованный таким образом вектор представляет скорость в данный момент. Вектор скорости лежит на касательной линии. Его длина представляет собой численную величину скорости или ту скорость, которая указывается, например, спидометром автомашины.

      Рис. 9.

      Наш идеализированный эксперимент, в котором уничтожены силы для того, чтобы найти вектор скорости, нельзя принимать слишком серьезно. Он только помогает нам понять, что мы должны называть вектором скорости при криволинейном движении, и позволяет нам определить его для данного момента в данной точке.

      На рисунке 10 показаны векторы скорости для трех различных положений частицы, движущейся вдоль кривой. В этом случае во время движения меняются не только направления, но и величины скорости, как показывает длина векторов.

      Рис. 10.

      Удовлетворяет ли это новое понятие скорости требованию, сформулированному для всех обобщений? Иначе говоря, сводится ли оно к прежнему понятию скорости, если кривая становится прямой? Очевидно, да. Касательная к прямой есть сама прямая. Вектор скорости лежит на линии движения, так же как это было в случае движущейся тележки или катящегося шара.

      Рис. 11.

      Следующий шаг – это введение изменения скорости частицы, движущейся вдоль кривой. Оно также может быть выполнено различными путями, из которых мы выберем самый простой и удобный. Последний рисунок показывал несколько векторов скоростей, представляющих движение вдоль кривой в разных точках. Первые два из них можно опять нарисовать так, чтобы они имели общую исходную точку (рис. 11), что, как мы видели, возможно проделывать с векторами. Пунктирный вектор мы называем изменением скорости. Его начальная точка представляет собой конец первого вектора, а конечная точка – конец второго вектора. Этим и определено изменение скорости. Такое определение может на первый взгляд показаться искусственным и бессмысленным. Оно становится гораздо яснее в особом случае, в котором векторы 1 и 2 имеют одинаковое направление (рис. 12). Конечно, это означает переход к случаю прямолинейного движения. Если оба вектора имеют


Скачать книгу
Яндекс.Метрика