Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта. Макс ТегмаркЧитать онлайн книгу.
даже карманный калькулятор легко обгоняет меня в состязании на быстроту в арифметических подсчетах, он никогда не улучшит своих показателей ни по быстроте вычислений, ни по их точности, сколько бы ни тренировался. Он ничему не учится, и каждый раз, когда я, например, нажимаю кнопку извлечения квадратного корня, он вычисляет одну и ту же функцию, точно повторяя одни и те же действия. Точно так же первая компьютерная программа, обыгравшая меня в шахматы, не могла учиться на своих ошибках и каждый раз просчитывала одну и ту же функцию, которую умный программист разработал, чтобы оценить, насколько хорош тот или иной следующий ход. Напротив, когда Магнус Карлсен в возрасте пяти лет проиграл свою первую игру в шахматы, он начал процесс обучения, и это принесло ему восемнадцать лет спустя титул чемпиона мира по шахматам.
Способность к обучению, как утверждается, – основная черта сильного интеллекта. Мы уже видели, как кажущийся бессмысленным фрагмент неживой материи оказывается способным запоминать и вычислять, но как он может учиться? Мы видели, что поиск ответа на сложный вопрос подразумевает вычисление некоторых функций, и определенным образом организованная материя может вычислить любую вычислимую функцию. Когда мы, люди, впервые создали карманные калькуляторы и шахматные программы, мы как-то организовали материю. И теперь, для того чтобы учиться, этой материи надо как-то, просто следуя законам физики, реорганизовывать себя, становясь все лучше и лучше в вычислении нужных функций.
Чтобы демистифицировать процесс обучения, давайте сначала рассмотрим, как очень простая физическая система может научиться вычислять последовательность цифр в числе π или любом другом числе. Выше мы видели, как холмистую поверхность с множеством ям между холмами (рис. 2.3) можно использовать в качестве запоминающего устройства: например, если координата одной из ям точно равна х = π и поблизости нет никаких других ям, то, положив шарик в точку с координатой х = 3, мы увидим, как наша система вычисляет отсутствующие знаки после запятой, просто наблюдая, как шарик скатывается в ямку. Теперь предположим, что поверхность сделана из мягкой глины, поначалу совершенно плоской как стол. Но если какие-то фанаты-математики будут класть шарики в одни и те же точки с координатами, соответствующими их любимым числам, то благодаря гравитации в этих точках постепенно образуются ямки, и со временем эту глиняную поверхность можно будет использовать, чтобы узнать, какие числа она “запомнила”. Иными словами, глина выучила, как ей вычислить значащие цифры числа π.
Другие физические системы, в том числе и мозг, могут учиться намного эффективнее, но идея остается той же. Джон Хопфилд показал, что его сеть пересекающихся нейронов, о которой шла речь выше, может учиться подобным же образом: если вы раз за разом приводите ее в одни и те же состояния, она постепенно изучит эти состояния и будет возвращаться в какое-то из них, оказавшись где-то поблизости. Вы хорошо