Мозг: прошлое и будущее. Что делает нас теми, кто мы есть. Алан ДжасановЧитать онлайн книгу.
вызывают кальциевые сигналы и в нейронах, и в других глиальных клетках. Функциональное воздействие глиомедиаторов на поведение и когнитивные процессы – важная тема современных исследований[109].
Кроме того, на воздействие нейрохимикалий сильно влияет не зависящий от клеток процесс диффузии – пассивного распространения молекул, обусловленный их случайным движением в жидкости. Диффузия вызывает и спонтанную дисперсию капелек масла по поверхности лужи, и бесцельную пляску микроскопических частиц в молоке – так называемое броуновское движение. Она же влияет на постсинаптическую активность нейромедиаторов, причем весьма существенно; как именно это происходит, мы пока не понимаем, но знаем, что это совсем не похоже на упорядоченную передачу информации по контактам между нейронами, будто по проводам. Некоторые нейромедиаторы и большинство нейромодуляторов славятся именно своей способностью распространяться из синапсов посредством диффузии и воздействовать на далекие клетки, не связанные непосредственно с теми клетками, которые выработали эти вещества. Среди подобных диффундирующих молекул – дофамин, нейромедиатор, с которым мы уже сталкивались, когда обсуждали обучение за вознаграждение у обезьян. Значимость диффузии дофамина особенно видна на примере действия наркотиков – кокаина, амфетамина и риталина. Эти препараты блокируют молекулы, задача которых – убирать дофамин после того, как синапсы его выработали. Таким образом, наркотики способствуют распространению дофамина в мозге, в результате чего он затрагивает множество клеток[110].
Кроме того, диффузия нейромедиаторов лежит в основе явления помех при синаптической связи: это еще один неконвенциональный вид коммуникации в мозге, при котором молекулы, выработанные одним синапсом, попадают в чужие синапсы и влияют на их функции[111]. С точки зрения синапса, подвергнувшегося такому вторжению, это словно во время личного телефонного разговора с другом услышать, как в трубке бубнит третий голос. Есть много исследований, показывающих, что неожиданно высокие уровни помех наблюдаются между синапсами, использующими нейромедиатор глутамат, который вырабатывают 90 % нейронов в мозге и который известен в основном быстрым действием внутри отдельных синапсов[112]. Эти результаты примечательны тем, что ставят под сомнение идею синапса как фундаментальной единицы передачи информации в мозге. Ведь и помехи при синаптической связи, и более общие эффекты нейрохимической диффузии в мозге – это аспекты так называемой передачи информации по объему, поскольку действуют они вширь по объему тканей, а не по конкретным связям между парами нейронов[113]. Передача по объему возникает при перекрывании «волн» колеблющихся концентраций нейромедиаторов, и это больше похоже на рябь от дождя на поверхности пруда, чем на упорядоченное течение электричества по проводам.
Так что с точки
109
D. Li, C. Agulhon, E. Schmidt, M. Oheim, and N. Ropert, «New tools for investigating astrocyte-to-neuron communication»,
110
J. O. Schenk, «The functioning neuronal transporter for dopamine: Kinetic mechanisms and effects of amphetamines, cocaine and methylphenidate»,
111
B. Barbour and M. Hausser, «Intersynaptic diffusion of neurotransmitter»,
112
N. Arnth-Jensen, D. Jabaudon, and M. Scanziani, «Cooperation between independent hippocampal synapses is controlled by glutamate uptake»,
113
K. H. Taber and R. A. Hurley, «Volume transmission in the brain: Beyond the synapse»,