Мозг: прошлое и будущее. Что делает нас теми, кто мы есть. Алан ДжасановЧитать онлайн книгу.
в мозге особенно распространены митохондрии, «клеточные энергоустановки»; они потребляют около 20 % всего запаса энергии, расходуемой организмом[138]. Если перейти на масштаб еще меньше, окажется, что в мозге содержится бесчисленное множество биоактивных молекул. Среди важных разновидностей этих молекул и около сотни нейромедиаторов и нейромодуляторов, о которых мы говорили в предыдущей главе, и крупные биологические молекулы, например, белки и ДНК, играющие в пределах каждой клетки весьма специфические роли. В сумме молекул в мозге больше, чем звезд во Вселенной, – их буквально миллиарды миллиардов миллиардов.
Однако многие нейрофизиологи скажут, что сложность мозга гораздо нагляднее видна не в количестве его компонентов, а во взаимодействиях между ними. В ведре воды молекул больше, чем в мозге, но поскольку все молекулы в ведре имеют одну и ту же скучную формулу H2O, в нем возможно лишь относительно небольшое количество взаимодействий нескольких конкретных типов. Биомолекулы мозга, напротив, обладают самыми разными структурами со множеством деталей и вступают в избирательные взаимодействия с определенными наборами других молекул в зависимости от их формы. Если каждый тип молекул в мозге обозначить точкой, а каждое взаимодействие – линией между парой точек, в результате получится огромный пушистый клубок пересекающихся линий, и для его интерпретации понадобится сложный вычислительный анализ.
Сложность молекулярных взаимодействий в клетках наблюдается во всех органах в организме, однако в мозге есть и дополнительный уровень сложности, характерный только для него, – это взаимодействия между клетками. Благодаря тоненьким аксонам и дендритам нейронов, а также влиянию астроцитов, которые запускают самые разные клеточные процессы по своим отросткам, клетки мозга способны дотягиваться и дотрагиваться до множества разных клеток одновременно. У отдельных нейронов таких отростков бывают сотни, и они действуют словно провода, передающие электрические импульсы. Аксоны, переносящие информацию из одной части мозга в другую, достигают нескольких сантиметров в длину и составляют светлую сердцевину мозга под корой – белое вещество. По некоторым оценкам, общая длина нервных волокон в белом веществе у нормальных взрослых превышает сотню тысяч километров – это в два с лишним раза больше окружности Земли, больше суммарной длины федеральных автострад на всей территории США[139]. Если же взять, к примеру, печень, мы обнаружим, что клеток в ней столько же, сколько в мозге, однако связи между ними значительно ограниченнее[140]. Клетки печени компактны и контактируют лишь с десятком непосредственных соседок в ткани. Они живут в эпоху до шоссе и телефонов по сравнению с клетками мозга, обитающих в эру Интернета.
Задача составить схему всех связей между клетками мозга испугает даже Геракла от науки, однако именно этим занимается сравнительно новая отрасль нейрофизиологии – коннектомика
138
D. Attwell and S. B. Laughlin, «An energy budget for signaling in the grey matter of the brain»,
139
B. Pakkenberg et al., «Aging and the human neocortex»,
140
E. Bianconi et al., «An estimation of the number of cells in the human body»,