Эротические рассказы

The Power of Movement in Plants. Charles DarwinЧитать онлайн книгу.

The Power of Movement in Plants - Charles  Darwin


Скачать книгу
the cotyledons of O. corniculata were dissected out of a seed from which they would soon have naturally emerged, no trace of a pulvinus could be detected; and all the cells forming the short petiole, 7 in number in a longitudinal row, were of nearly equal size. In seedlings one or two days old, the pulvinus was so indistinct that we thought at first that it did not exist; but in the middle of the petiole an ill-defined transverse zone of cells could be seen, which were much shorter than those both above and below, although of the same breadth with them. They presented the appearance of having been just formed by the transverse division of longer cells; and there can be little doubt that this had occurred, for the cells in the petiole which had

      Fig. 64. Oxalis corniculata: A and B the almost rudimentary pulvini of the cotyledons of two rather old seedlings, viewed as transparent objects. Magnified 50 times.

      been dissected out of the seed averaged in length 7 divisions of the micrometer (each division equalling .003 mm.), and were a little longer than those forming a well-developed pulvinus, which varied between 4 and 6 of these same divisions. After a few additional days the ill-defined zone of cells becomes distinct, and although it does not extend across the whole width of the petiole, and although the cells are of a green colour from containing chlorophyll, yet they certainly constitute a pulvinus, which as we shall presently see, acts as one. These small cells were arranged in longitudinal rows, and varied from 4 to 7 in number; and the cells themselves varied in length in different parts of the [page 120] same pulvinus and in different individuals. In the accompanying figures, A and B (Fig. 64), we have views of the epidermis* in the middle part of the petioles of two seedlings, in which the pulvinus was for this species well developed. They offer a striking contrast with the pulvinus of O. rosea (see former Fig. 63), or of O. Valdiviana. With the seedlings, falsely called O. tropaeoloides, the cotyledons of which rise very little at night, the small cells were still fewer in number and in parts formed a single transverse row, and in other parts short longitudinal rows of only two or three. Nevertheless they sufficed to attract the eye, when the whole petiole was viewed as a transparent object beneath the microscope. In these seedlings there could hardly be a doubt that the pulvinus was becoming rudimentary and tending to disappear; and this accounts for its great variability in structure and function.

      In the following Table some measurements of the cells in fairly well-developed pulvini of O. corniculata are given:—

      Seedling 1 day old, with cotyledon 2.3 mm. in length. Divisions of Micrometer.** Average length of cells of pulvinus … … … … … … … … … … … … … … … . … .6 to 7 Length of longest cell below the pulvinus … … … … … … … … … … … . … 13 Length of longest cell above the pulvinus … … … … … … … … … … … . … . 20

      Seedling 5 days old, cotyledon 3.1 mm. in length, with the pulvinus quite distinct. Average length of cells of pulvinus … … … … … … … … … … … … … … … . … . 6 Length of longest cell below the pulvinus … … … … … … … … … … … . … 22 Length of longest cell above the pulvinus … … … … … … … … … … … . … . 40

      Seedling 8 days old, cotyledon 5 mm. in length, with a true leaf formed but not yet expanded. Average length of cells of pulvinus … … … … … … … … … … … … … … … . … . 9 Length of longest cell below the pulvinus … … … … … … … … … … … . … 44 Length of longest cell above the pulvinus … … … … … … … … … … … . … . 70

      Seedling 13 days old, cotyledon 4.5 mm. in length, with a small true leaf fully developed. Average length of cells of pulvinus … … … … … … … … … … … … … … … . … . 7 Length of longest cell below the pulvinus … … … … … … … … … … … . … 30 Length of longest cell above the pulvinus … … … … … … … … … … … . … . 60

      ______________________________________

       Table of Contents

      * Longitudinal sections show that the forms of the epidermic cells may be taken as a fair representation of those constituting the pulvinus.

      ** Each division equalled .003 mm. [page 121]

      We here see that the cells of the pulvinus increase but little in length with advancing age, in comparison with those of the petiole both above and below it; but they continue to grow in width, and keep equal in this respect with the other cells of the petiole. The rate of growth, however, varies in all parts of the cotyledons, as may be observed in the measurements of the 8-days' old seedling.

      The cotyledons of seedlings only a day old rise at night considerably, sometimes as much as afterwards; but there was much variation in this respect. As the pulvinus is so indistinct at first, the movement probably does not then depend on the expansion of its cells, but on periodically unequal growth in the petiole. By the comparison of seedlings of different known ages, it was evident that the chief seat of growth of the petiole was in the upper part between the pulvinus and the blade; and this agrees with the fact (shown in the measurements above given) that the cells grow to a greater length in the upper than in the lower part. With a seedling 11 days old, the nocturnal rise was found to depend largely on the action of the pulvinus, for the petiole at night was curved upwards at this point; and during the day, whilst the petiole was horizontal, the lower surface of the pulvinus was wrinkled with the upper surface tense. Although the cotyledons at an advanced age do not rise at night to a higher inclination than whilst young, yet they have to pass through a larger angle (in one instance amounting to 63o) to gain their nocturnal position, as they are generally deflected beneath the horizon during the day. Even with the 11-days' old seedling the movement did not depend exclusively on the pulvinus, for the blade where joined to the petiole was curved upwards, and this must be attributed to unequal growth. Therefore the periodic movements of the cotyledons of 'O. corniculata' depend on two distinct but conjoint actions, namely, the expansion of the cells of the pulvinus and on the growth of the upper part of the petiole, including the base of the blade.

      Lotus Jacoboeus.—The seedlings of this plant present a case parallel to that of Oxalis corniculata in some respects, and in others unique, as far as we have seen. The cotyledons during the first 4 or 5 days of their life do not exhibit any plain nocturnal movement; but afterwards they stand vertically or almost vertically up at night. There is, however, some degree of variability in this respect, apparently dependent on the season and on the degree to which they have been illuminated during [page 122] the day. With older seedlings, having cotyledons 4 mm. in length, which rise considerably at night, there is a well-developed pulvinus close to the blade, colourless, and rather narrower than the rest of the petiole, from which it is abruptly separated. It is formed of a mass of small cells of an average length of .021 mm.; whereas the cells in the lower part of the petiole are about .06 mm., and those in the blade from .034 to .04 mm. in length. The epidermic cells in the lower part of the petiole project conically, and thus differ in shape from those over the pulvinus.

      Turning now to very young seedlings, the cotyledons of which do not rise at night and are only from 2 to 2½ mm. in length, their petioles do not exhibit any defined zone of small cells, destitute of chlorophyll and differing in shape exteriorly from the lower ones. Nevertheless, the cells at the place where a pulvinus will afterwards be developed are smaller (being on an average .015 mm. in length) than those in the lower parts of the same petiole, which gradually become larger in proceeding downwards, the largest being .030 mm. in length. At this early age the cells of the blade are about .027 mm. in length. We thus see that the pulvinus is formed by the cells in the uppermost part of the petiole, continuing for only a short time to increase in length, then being arrested in their growth, accompanied by the loss of their chlorophyll grains; whilst the cells in the lower part of the petiole continue for a long time to increase in length, those of the epidermis becoming more conical. The singular fact of the cotyledons of this plant not sleeping at first is therefore due to the pulvinus not


Скачать книгу
Яндекс.Метрика