Эротические рассказы

Единоплеменники. Сплотить, убедить, вдохновить. Кристин КомафордЧитать онлайн книгу.

Единоплеменники. Сплотить, убедить, вдохновить - Кристин Комафорд


Скачать книгу
англо-американский ученый, работы которого носят междисциплинарный характер и исследуют широкий спектр вопросов эпистемологии, кибернетики, теории информации, антропологии, социализации, теории коммуникации, экологии.

      5

      Роберт Дилтс (англ. Robert Dilts, род. 1955) – американский психолог, один из основоположников школы НЛП.

      6

      Пол Маклин (англ. Paul Donald MacLean, 1913–2007) – американский нейрофизиолог и психиатр, разработавший модель триединого мозга, включающего рептильный комплекс, лимбическую систему и новую кору (неокортекс), в качестве удобной с точки зрения психиатрической практики еще в 1960-е годы.

iVBORw0KGgoAAAANSUhEUgAAAMgAAAArCAYAAAA9iMeyAAAACXBIWXMAAAsTAAALEwEAmpwYAAASNElEQVR42u2d+WsUSRvHq3sSY4xHjGbJxmOjrvd9LiqCuMEgKlEhARWDCsETXQWDsiAiwRVdRCGgiCLsDxIQFERZQQTBAzzAg2UR1FwTyb/x9sP7KfpJbXfP5HDZxCkoJjNdXV3H9/tcVV0x5v/Ji/n8WimvF/d4vWyXF/M9m756CfW4KcWnr37ze9A+L6HObPqV7XNSzm9ue7/23A+45H3lwfH7aYKT6vSzqDvVAyJ5WRAs2+9+P42ZlwU5bRoa5CVB3hTkLUHeSpa/Nwd5bZArshibHFn6UUJlO+FeloCNut/rYRu9PhC4J3X0pE/Z9sHPon2pGE20PMing3w1yH+Qm/m8HuQrQd4W5BKnDv9ftiS+eWKYXgI7rqyfJaj7SzN5//JYe70g8xB1TTTGzSB/CHJXkDuDnA5yW5Dbg9wS5C98l/woyA1BLv8XxnZQEMLvg5TPRvrnfcU+RJldfi8A597r9ZFoXg/nIBufyPXHFqEVWiGEJcUnCHMwyLuDfCHIr4PcEeTPfApxXmGC5feDefhNEGbIV5agfi/Kp7Ikrd+Pz42638sQOPD6ieDZCCq5pyrIbwB6lyLJR0DvBkVmBPmWKtuutM1JyuaI4aS8iEkZ3c+EENJN7SPxpJ4FQR4HaDzV/kyOuZdBsudF/O1nQYJUDJGHZNAmXoSG7am/swGQdwH0e0G+gdbYrMovhkij+F4U5Gv4JFL2Lfen8VvycpSITvlqUH8Ncm0/1j0pyOexd3vriwgx6oI837m2BfPhPFJQHNRz/Ca5Mcj7grwyyAUZnrOGen5nDE5S10XqOhPkw0FeFeQRMXUMD/Ih7mmknlPUeVHVvTPI8xJ8nyRt9RNaQkD9lDEoiiDlLsDfBoEmRrRXxvMyWkTy2ZyDnlnVbwUYw5VUFHBNCfKyII8P8uwgT+DaGAY/D+As41pFkKdR9zEiLMO4p5D6hvLbHIhkJ0cmfCHPlzJHgzyXsoUKNCexo9OAoQOpKMB5gb1tHVQBSU2M0y917Q3yO+x3K5lFSj+hvs+ArRUnd2vE2BUimV8BuDbqElPoGW2yv3+k7OQe+CXjqLuDOueqa2Mdc6pFjUs7JDfKStDa4irtaoW8uRSTRMovYTBnqd8XAvI6JPK6IG+HCBtR6z8Bsp0Auoqy5VwXs2APk/pzkHcg2QVovwV5Js+ajVSUz20A6BwmltT5o2qXELeYetsB4FTMnGGYFlL+NmD5Gw0Q5Z+IFh1JWz9TXzXPKAL8kzBP2gDglghzLY+yVyDm8yB/Rz1C9jLlP6Qh29gIkkSZfhcV6PeoaxcQDI8RStOUI95Gf36n/Dkc9geMRQqh9xySvDHhWon/Ffy5AZPclVSRKqsBlqjnE0qCLYIQAvZ6tEZlkA/wPQ+N0AggBVjfc08lhCqDGE2YKiVoqRM8z9rXR6nXYDJVYv6U0bb8iD7UKzCWR/gJc5n4DkyKpFDrOhUSrVTPsHVNAIhS5o7yOdx0hTre0E/Xx9kMydoYp7gFW9vfWUj4z4Rz5/D7UfplNcZjxvYU5eXaS0hqx8lqx6e0zUOLpKnndC8CB4Pa98hHmlQzECuIeEzh+jI0yELAOx1tUolEqkJyn8UxrINU+wF3LcBbjal1kskqwWbfrsAzD1NoEiCaAQgmo61mRfRjnwLjD0yiK+nuAZY/TfICZLUy1zbGgOKGAl6ZM5a+KtOKViuPeN6PAL0d/ybJxPIY2zQA/1sFPm5ixrWp6NRMNS7HmC9btlVplo/MtUELWfPyhTKh+xKlGzSaJIWEKVWRmAolXQoAXh7qeDgANgDXOsElmBflaKSx1D0KtW/BVAIhS9AK3zkSqpDn5ynbexSfZRETdpDJfR3hjObTn2YTLpJFRaFsfZogmyJMKA8wdaKxfoiRttcA20vTfUHOJgH4XzznXAwIfeX8P1f+RAsaxEf4tPF7J4JtTMw813Gv7d8tzD5J19Xv7Y6PZb5lcngxJpdJCE2aGMmaihjQqC0NfobfUj2QXB4mWzsEqYjQkClMj06kqEmIHtUAkja0XtTGvptKYxU6fbBtv0Y971To3FPXZ2AudRLZ0v12x3k1daXROhuc65X4Rr8pyT+CKNVizF1b927a36CI5CMcrysSnjfxe9++WdJEmRxezJpBJqfNc7SCn1BvUuQmTtLrVA/QnqiQp4kIeaYBfdIkaw2yMqL/MyBGl/JnotI1SPQ0Ytx8zM8uNF9lBjN4B6ZRC+apTRswUSdFhLFPYYr9hdYc7/RlJNpnH2NmSfIqQrt882ZWqh/Lej2438syiGAyaLQDgPE9YBKfSHaurg/ycTRLMyZGJm26HrJ1UNcEADgHSf4CsD7DH4qTsjcg5BsIMJ96FhGYsIQ96wifVMTYNKj+lXBtt3LCW/D1fFW+xQl/P1Sh9AIIkEaLNUMGGzpvR+N+lwvsDg6Nt4/J7lARqDQA+gJYNmZZV7UCr7XrW5Vz+4xo3UQF6iii31ARo7QKDX9Ba1xF82UjlU9Txy3KjwTAto9pgg9We95Wv7fQh08qrHuYsepQBNqutJKNhpX1QgDm0n+MHB7mShrpvhLJPo2I2GpMjA+AsjRDvRsBcwfAFOBsw2FfTqDANTejQHMB8L3DrFuHCdiGv5CK8b/0fjj7jF8B/F3ltD9S7bTbTayZdVcJhk6lKdYqgdKhNGWHCRdRa7jveQxBcvu1BiBRDgCS50S7XOdfQqpvAUlTghS0Yd5OQLK6D2ZiI/W8Ur5ECZK5BQLlxZisrr/2C/7KK8yePNr5iX6/wRn3nPHoUFrmDs66rfMG97dC2EKunaHd0s7inMYYHFpkL2B4paJY7sSeo8wHJ9LlbkDcgPTtQuKmsghCRKUzPO+1AqbBV7Dm4MkEkmmS1Jlw7eKs+l38mi0Qrwzto83O52itW2hO25dizDFZA5G1pmGqvr941k3TfVE2R5QBTBJrYr010ZvyLGDamPx1CRO/Rtnv62NMilQWtvlZ030x0Xd8ijaeU+mYbL4T/ZO/9QbFFnyXAlVmN+almFkz1XNGkG3ZoZDyLeam3mUtuw0eKLPrtIkO2+fIMgDTLwBINMgPMbb9EWVvVyZM9nIVHaruAyhOKw3iLm5+b8JFwocmXJCN8q+sX/JItb/DhDubjyjitKI1JnCv+yJUgwnXeGxYvJRxauZ+u7N3Y44Mg8O8siZWJ2CcFFPmEj6IALM8ob6lygRa1wsn1UrdsyZ8a29ChF9k29zF30lEHIKj3qn6UKGA3UI9FvwVRLp+w7+oop4/VHTORtiWKBPUag8hztic5hg8aa0Jt36MjgD0HKJJ6QxOuiHyZSNDazIAI8n8OG7C1f0os2w85BFwvweQUTsM7H3j8J9syHYRv+8wYRi5A99BfJLrylT8gOm1SZmZHZhkI6nHrttI/YcizL1cGmDJ7iCWkO4xBRwBtYR4ZwN2cWL/RmLeNt23y2tAimkmq+RbTfjOxmF+m2Hit4Ho3bwFAHEmNr4NCqygLeOce0/wrHY03DwTH4b2MJEsuE+oa4cw1a6hHWeZ8JVau/fqijLJZM3kMuNk+HxHvY9N5lB4Lg2AVMxE25eb3uOH2JXlzwok9wDG2Bjpb19FtQcf2C0a1q5/ienmvibr+gpLuM+uO3xQUr8Vk0cTajZaz257bzPdt5K4bS3AkbZaYW3M2FTwvDblUxx3AgH2cxhRLhslW5+D1uBIApZVOJPynom8ULXMhO+fiN29GhAWJdTjK9+jGg0kDvBCE74CsEYBO+kEkBGAtgpnfz7ZtmlBhLk1lXZL+c3mn9v5Xee9HMK2E41qQCvaXdC2TdWYd52YlaOUMLDvp6+HcPb9kMM5WA1OJ90FXdL7Hlryu1tFok5Q8SJMqSifIs6Jz8/CwXXXVNzwqlvnKjSmdcxfoiUF7NtVOTGd5qo6JqIt7mOSpZVjf94Zk1waBGmIiX6/PBOBsiVgtg5q1HpBT48RjQJnKoZsBu34xHR/RySNH7YzguTTIUarMgHtvrAjJvols1wawCkbwPsJZbMlUKoHz82PKJufQDovwWxzdyznRZSXl9UuqMhUmwk3a97H/DqEifUBYnQpX+ux6b7Wky2Rc2mAmllJJkJSSDbucLrenAHsZ1lXXkx7vQyki4qgVRI1e2fCncz284sJFz6tSSX7smS/1kiHkDlifAMEibruZ7Dpo1bevYS6ku7riamW6oFJFnc8rO+YUbJvSyJh1/E3JLQtayOX0CbivwzvgxmYSwMkFZvwfC7ZqzSzh/dLxEnWHYYlmDqeiX/dOIpgRSY8AVJ21y7MUN5uMvQdzTIGAkw23ddt9P1jTfcD7KI00XDzz5NgXIJOoL3izK8w8adHZhJQqYQghawjjTaZj2stZV61QCtgjOJOyMw0R9n+Wwq/D/7qfzIJiGSbhexRqsHObnRA4yVIYxvRmRcjmbM50tQ1mfRmwP34B1dVm3ynDlms+92pUxYqnwKWHfTJBb+QRkK4Vab7eyNeQhvjgLGLun7hWc2MTW/OCEjFkFXqPOfU4bZHwtD3TLiKb9NJtGB+D8zpTAToj3IDIsn+JFmYKyRy8xhgjVQDWKz+lnJTle3+o7puT2pxTwSpcIAhZcar65NM94PWVmHnT0EyS7RI774dZcL1CtnQeJc67CJmNT7DFNqk10WmIIlFK7wA3OMiNGOJ+m4PvLPrHxNM9+3+i4iAzeK6OPun1PWZJty+M1KBstgBUzHE0prE51li4t3gXiH1UnWfPlnyNoSYZsK1qxP01Y7/eDV+LnnlXZk5jn+nT58cxjzIM8vVmJb2IgA0INJ+wLiPQTzI7+eRiOORXj8zeTsB60omSSZEdtbKdnHZyLeHyZzDhMsWlqNoAiGWLORt47kVaK4tlLGgk7plRd+e9fua3+RUxNWA1WoVOTRB1jDOoAnnYZo95nmNtGEI7a4z4Zt/zWig0yY8VnQF5c9Tbgp9fMK962h/vSL5Ahz6BvohhJ0PCOW3vbRjJT7OJYi7B61djBa8zPjfRMiU0q4q+lMPWFsh4ETG/SDjIeA9DpEu0u4JaNS7JnwP/1fKbHawUMW82BNbxjI2h2jzGO75g3G/Qn93qj4PKh/Mo4PvsfV3EdqcycD8ySQ/YUJkAN4gocZAglbK7zfhO93NkEsA8AwJK1tE1hP9aQZoMgEPGNyNyoxaAUFqTXhItUHTNfD3MyZ/N/ePByQ3Iex9AHQJkI2in1fwtwzt3QrRXyB1/+QZBwB1BeHdOoj5ADPGHnidR3vbuS8NwSQd4fd8xuM1oH9E2wRsnZDmLqD9Ho25CcLcoq5rJjxe9iVjOos6aiDoOMB/HAn/jOeuYBxWo+m2Ya41KjALye3LcnMgcxNkKGLeTppw7ciabo8g+COeUTbYHPVjAMADoB8B6x6AXAIgGiDLISbabvSzJwiuZzDzTHjq43FFmiITbiO5xOQJUJcABPsuvEFbyYQvd9r6GGns8XeReoak7USextDmSQDkItfrAeJ1vt9HSw1jgpdCgF1onKEAVtpmT5tcQ/ufm3CnsjUJFwKgTwBuD+PpAeQ2CHIbUK2nbCnkbqS+h4D+Dr/7fF414d6z6bR7P2PyFvJcUubddf5ewxhXQ5Cf6F8hgJ5CHz47QZGH3Jei3iYE0W2uHwIjHuUumvBViUGhRUYA6jdI0gsMQgET+gIJ/orBWE65er5PQ6ovRs3fV5PZyGC9QArWEYk5QD1nkGR1kOSSCV/P3Q2wDjvRmPMAeDMEW4ikvQOgrkGylZB+Ff1pwlfaC/nPAYyHkGqBCd8P2QrYmpSUfge4RiOhV2ISVSrifYCMhgDBHbSESP0NgMdev4OGPoI2mMM8NGF6vaSPqxBGO7inCTI94N5VCIpapPo22neeft1CqxxBAJQxRk8RLMXU/ZAxPs2zmyCV1SKb0cxLqPcRWvEYbSmn/ZeZ40GTRgPsegCwVzl8Y5jQWiTqUiayFoCXAJ5DmEBrqKcI88Oe2l6DJNvGhGzA1p2O2bOF7wshpo/5tQuwFiqCzEQ7beLaVMy0KurZRNllgGIx5WoAx1ZAXUHf7f89mQhgfmDiz0CiWdxXj2awx5RWUfdQCF0FqWuQzKto53Ckcw3AKlVBhAbK1ULeWn4v5nnLKLuHuu11nzGsod17aUs1mncW81PHd/u8o8qhvgGRhpvwn5Z69FWE5FkTnkW8hnHbrPzDOoINK5mnUjWPk3NrQbmUS7mUS7mUS7mUS18t/Q/AyBTGpK5OIgAAAABJRU5ErkJggg==/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAHNAooDASIAAhEBAxEB/8QAHAABAAEFAQEAAAAAAAAAAAAAAAUCAwQGBwEI/8QASBAAAQMDAgQDBAcGBAUDAwUAAQACAwQFERIhBjFBURNhcRQiMoEHI0JSkaHRFTNicrHBFiRDgkRTkuHwNFSiF2OTJTU2RfH/xAAUAQEAAAAAAAAAAAAAAAAAAAAA/8QAFBEBAAAAAAAAAAAAAAAAAAAAAP/aAAwDAQACEQMRAD8A7+iIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIi8Jwg9RWpZ4oIzJLI2Ng5uecALX6zje0UxLYXvqnjpC3bPqdkGyoue1X0h1AJ8CigiHeaTJ/AKJl+kK5knFbTM8mRZ/qg6wi4+ePrnn/8AdB/+Eforsf0g3Mf/ANhC7+eIIOtoub0v0iVu3iQ0k47scWn+6m6Tj63SkNqoJ6YnrjW38t/yQbaixaO40dwj8SkqYpm/wOzj1HRZSAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgLzKE4WJVVcdPE+SR7WMYC5zjyAQX3ytYCSQABkknYLTrzxzFBritjWzPbs6d/7tvp3/otc4m4rfXhzGudFQg4bGNnTHufLyWkVNXLVH3jpYOTByH6oJm58RTV0xfPPJVydNRwxvoFES19TLsZNI7M2WMp2ktVuxaKatfVCruzA+OSItDKdriWx5B3dk8+WMoII7nJ3Pc7opAWWuNNNOfBHhGUCMyAPlEX7wsb1AVyosFbTQOldJSyOaYg+GOXMjPF/d5GNsoItFMQcOVUlwpqZ89OYpmyu9ogeJGNEf7wfzA7YVqutUkU9X7PBI2Cliikd4sjXOe150tc0t2IJPIZ9UEZgK9HVTw/BK4DsdwpE8N1rKqspp6mhgmo2h87JZ8aWkD3uW43AUfU0stIYBLo/wAxC2eMtdnLHcj+SDOpL1JBK2Q64pBylhOCFvlk4+mY1rK/FVBy8aPZ7fUdfyXLlXFK+F+uNxa7+qD6Mo62muFM2opZmyxO5Oaf/MLIXEuHuI6mgqvFpnaZD+8hJ9yUfr5rrtou9NeaFtTTnHR7CfeY7sUEgiIgIiICIiAiIgIiICIiAiIgIiICIiAiLwkDmUHqLBrrxQW1uqsqo4ewcdz8lAyfSJYI3lvjSux1DEG2IteouNbFWuDWVojcTgCUafzU+x7ZGB7HBzSMgg5BQVIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAiIgIiICIiAhRUSO0
Скачать книгу
Яндекс.Метрика