Внедрение искусственного интеллекта в бизнес-практику. Преимущества и сложности. Томас ДэвенпортЧитать онлайн книгу.
на сочетание рабочего процесса, бизнес-правил и интеграции «уровня представления» с информационными системами, она функционирует как полуинтеллектуальный пользователь этих систем. Порой РАП сравнивают с макрокомандами электронных таблиц, но я считаю такое сравнение некорректным, поскольку РАП может справляться с гораздо более сложными задачами. Ее также сравнивают с инструментами управления бизнес-процессами, которые могут управлять рабочим процессом, но на самом деле технология была создана для того, чтобы документировать и анализировать процесс, а не автоматизировать его[16].
Некоторые системы РАП уже в определенной степени наделены интеллектом. Они могут «наблюдать» за тем, как работают их коллеги-люди (например, как они отвечают на частые вопросы клиентов), и имитировать их действия. Другие сравнивают процесс автоматизации с машинным зрением. Как и физические роботы, системы РАП постепенно становятся более интеллектуальными, а для управления их поведением начинают использоваться другие типы технологий ИИ.
Я описал эти технологии по отдельности, но все чаще они объединяются и интегрируются. Однако сегодня человеку, принимающему бизнес-решения, очень важно знать, какие технологии какие задачи выполняют. Директор по информационным технологиям Global Inc. Кришна Натан отмечает, что в 2018 г. один из ключевых приоритетов его компании – «помочь акционерам понять, на что способен и не способен ИИ, чтобы использовать его должным образом»[17]. Возможно, в будущем эти технологии окажутся так тесно переплетены, что необходимость в таком понимании исчезнет, а возможно, технологии вообще станут неотделимы друг от друга.
ИИ в сообществе поставщиков технологий
В этой книге я в основном рассказываю об использовании когнитивных технологий крупными предприятиями в таких сферах, как предоставление финансовых услуг, производство и телекоммуникация. Но большая часть работы, выполняемой крупными коммерческими предприятиями, стала возможной благодаря исследованиям и разработкам, проводившимся в тех же местах, где в 2000-х гг. развивались технологии больших данных (включая Hadoop, Pig и Hive). В этот период Google, Facebook и в меньшей степени Yahoo! направляли значительные усилия на развитие технологий ИИ. Эти компании располагали огромным объемом данных для анализа, огромным количеством денег (по крайней мере в случае Google и Facebook) и прочными связями с учеными.
Пожалуй, не стоит удивляться, что компания Google стала самым активным разработчиком и пользователем технологий ИИ среди интернет-гигантов (а возможно, и среди всех компаний мира). Работая в сотрудничестве со стэнфордским профессором Эндрю Ыном, Google начала исследовать ИИ (в частности, глубокое обучение) в лабораториях Google X еще в 2011 г. Этот проект получил название Google Brain. Главным образом в рамках него изучалась технология глубокого обучения, которая использовалась для распознавания изображений и решения других задач. К 2012 г. группа исследователей решила
16
Doug Williams, "How Is RPA Different from Other Enteprise Automation Tools Such as BPM/ODM," IBM Consulting Blog, July 10, 2017, https://www.ibm.com/blogs/insights-on-business/gbs-strategy/rpa-different-enterprise-automation-tools-bpmodm/.
17
Steven Norton, "The Morning Download,"