Functional Metal-Organic Frameworks. Ali MorsaliЧитать онлайн книгу.
Desai, A.V., Samanta, P., Ghosh, S.K., Aqueous phase selective detection of 2,4,6-trinitrophenol using a fluorescent metal–organic framework with a pendant recognition site. Dalton Trans., 44, 15175–15180, 2015.
13. Joarder, B., Desai, A.V., Samanta, P., Mukherjee, S., Ghosh, S.K., Selective and Sensitive Aqueous-Phase Detection of 2,4,6-Trinitrophenol (TNP) by an Amine-Functionalized Metal–Organic Framework. Chem. Eur. J., 21, 965–969, 2015.
14. Das, P. and Mandal, S.K., Strategic Design and Functionalization of an Amine-Decorated Luminescent Metal Organic Framework for Selective Gas/Vapor Sorption and Nanomolar Sensing of 2,4,6-Trinitrophenol in Water. ACS Appl. Mater. Interfaces, 10, 25360–25371, 2018.
15. Ahmed, I., Khan, N.A., Yoon, J.W., Chang, J.-S., Jhung, S.H., Protonated MIL-125-NH2: Remarkable Adsorbent for the Removal of Quinoline and Indole from Liquid Fuel. ACS Appl. Mater. Interfaces, 9, 20938–20946, 2017.
16. Ahmed, I. and Jhung, S.H., Effective adsorptive removal of indole from model fuel using a metal-organic framework functionalized with amino groups. J. Hazard. Mater., 283, 544–550, 2015.
17. Seo, P.W., Ahmed, I., Jhung, S.H., Adsorption of indole and quinoline from a model fuel on functionalized MIL-101: Effects of H-bonding and coordination. Phys. Chem. Chem. Phys., 18, 14787–14794, 2016.
18. Gascon, J., Aktay, U., Hernandez-Alonso, M.D., van Klink, G.P.M., Kapteijn, F., Amino-based metal–organic frameworks as stable, highly active basic catalysts. J. Catal., 261, 75–87, 2009.
19. Chen, J., Liu, R., Gao, H., Chen, L., Ye, D., Amine-functionalized metalorganic frameworks for the transesterification of triglycerides. J. Mater. Chem. A, 2, 7205–7213, 2014.
20. Verma, A., De, D., Tomar, K., Bharadwaj, P.K., An Amine Functionalized Metal–Organic Framework as an Effective Catalyst for Conversion of CO2 and Biginelli Reactions. Inorg. Chem., 56, 9765–9771, 2017.
21. Ali Akbar Razavi, S. and Morsali, A., Linker functionalized metal-organic frameworks. Coord. Chem. Rev., 399, 213023, 2019.
22. Lin, Y., Kong, C., Chen, L., Amine-functionalized metal–organic frameworks: Structure, synthesis and applications. RSC Adv., 6, 32598–32614, 2016.
23. Zhang, Z., Yao, Z.-Z., Xiang, S., Chen, B., Perspective of microporous metal–organic frameworks for CO 2 capture and separation. Energy Environ. Sci., 7, 2868–2899, 2014.
24. Si, X., Jiao, C., Li, F., Zhang, J., Wang, S., Liu, S., Li, Z., Sun, L., Xu, F., Gabelica, Z., Schick, C., High and selective CO2 uptake, H2storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1. Energy Environ. Sci., 4, 4522–4527, 2011.
25. Cmarik, G.E., Kim, M., Cohen, S.M., Walton, K.S., Tuning the Adsorption Properties of UiO-66 via Ligand Functionalization. Langmuir, 28, 15606–15613, 2012.
26. Jiao, J., Dou, L., Liu, H., Chen, F., Bai, D., Feng, Y., Xiong, S., Chen, D.-L., He, Y., An aminopyrimidine-functionalized cage-based metal–organic framework exhibiting highly selective adsorption of C2H2 and CO2 over CH4. Dalton Trans., 45, 13373–13382, 2016.
27. Cabello, C.P., Berlier, G., Magnacca, G., Rumori, P., Palomino, G.T., Enhanced CO2 adsorption capacity of amine-functionalized MIL-100(Cr) metal–organic frameworks. CrystEngComm, 17, 430–437, 2015.
28. Jo, H., Lee, W.R., Kim, N.W., Jung, H., Lim, K.S., Kim, J.E., Kang, D.W., Lee, H., Hiremath, V., Seo, J.G., Jin, H., Moon, D., Han, S.S., Hong, C.S., Fine-Tuning of the Carbon Dioxide Capture Capability of Diamine-Grafted Metal–Organic Framework Adsorbents Through Amine Functionalization. ChemSusChem, 10, 541–550, 2016.
29. Montoro, C., García, E., Calero, S., Pérez-Fernández, M.A., López, A.L., Barea, E., Navarro, J.A.R., Functionalisation of MOF open metal sites with pendant amines for CO2 capture. J. Mater. Chem., 22, 10155–10158, 2012.
30. Wang, X., Li, H., Hou, X.-J., Amine-Functionalized Metal Organic Framework as a Highly Selective Adsorbent for CO2 over CO. J. Phys. Chem. C, 116, 19814–19821, 2012.
31. Lee, W.R., Hwang, S.Y., Ryu, D.W., Lim, K.S., Han, S.S., Moon, D., Choi, J., Hong, C.S., Diamine-functionalized metal–organic framework: Exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism. Energy Environ. Sci., 7, 744–751, 2014.
32. Choi, S., Watanabe, T., Bae, T.-H., Sholl, D.S., Jones, C.W., Modification of the Mg/DOBDC MOF with Amines to Enhance CO2 Adsorption from Ultradilute Gases. J. Phys. Chem. Lett., 3, 1136–1141, 2012.
33. Drisdell, W.S., Poloni, R., McDonald, T.M., Pascal, T.A., Wan, L.F., Pemmaraju, C.D., Vlaisavljevich, B., Odoh, S.O., Neaton, J.B., Long, J.R., Prendergast, D., Kortright, J.B., Probing the mechanism of CO2 capture in diamine-appended metal–organic frameworks using measured and simulated X-ray spectroscopy. Phys. Chem. Chem. Phys., 17, 21448–21457, 2015.
34. McDonald, T.M., D’Alessandro, D.M., Krishna, R., Long, J.R., Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri. Chem. Sci., 2, 2022–2028, 2011.
35. Kizzie, A.C., Wong-Foy, A.G., Matzger, A.J., Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir, 27, 6368–6373, 2011.
36. Hu, M.-L., Razavi, S.A.A., Piroozzadeh, M., Morsali, A., Sensing organic analytes by metal–organic frameworks: A new way of considering the topic. Inorg. Chem. Front., 7, 1598–1632, 2020.
37. Joarder, B., Desai, A.V., Samanta, P., Mukherjee, S., Ghosh, S.K., Selective and Sensitive Aqueous-Phase Detection of 2,4,6-Trinitrophenol (TNP) by an Amine-Functionalized Metal–Organic Framework. Chem. Eur. J., 21, 965–969, 2014.
38. Zhu, L., Liu, X.-Q., Jiang, H.-L., Sun, L.-B., Metal–organic frameworks for heterogeneous basic catalysis. Chem. Rev., 117, 8129–8176, 2017.
39. Zhang, Z., Xiang, S., Rao, X., Zheng, Q., Fronczek, F.R., Qian, G., Chen, B., A rod packing microporous metal–organic framework with open metal sites for selective guest sorption and sensing of nitrobenzene. Chem. Commun., 46, 7205–7207, 2010.
40. Razavi, S.A.A. and Morsali, A., Function–Structure Relationship in Metal–Organic Frameworks for Mild, Green, and Fast Catalytic C–C Bond Formation. Inorg. Chem., 58, 14429–14439, 2019.
41. Lin, Y., Zhang, Q., Zhao, C., Li, H., Kong, C., Shen, C., Chen, L., An exceptionally stable functionalized metal–organic framework for lithium storage. Chem. Commun., 51, 697–699, 2015.
42. Safarifard, V. and Morsali, A., Influence of an amine group on the highly efficient reversible adsorption of iodine in two novel isoreticular interpenetrated pillared-layer microporous metal–organic frameworks. CrystEngComm, 16, 8660–8663, 2014.
43. DeCoste, J.B., Browe, M.A., Wagner, G.W., Rossin, J.A., Peterson, G.W., Removal of chlorine gas by an amine functionalized metal–organic framework via electrophilic aromatic substitution. Chem. Commun., 51, 12474–12477, 2015.
44. Desai, A.V., Samanta, P., Manna, B., Ghosh, S.K., Aqueous phase nitric oxide detection by an amine-decorated metal–organic framework. Chem. Commun., 51, 6111–6114, 2015.
45. Peterson, G.W., Mahle, J.J., DeCoste, J.B., Gordon, W.O., Rossin, J.A., Extraordinary NO2 Removal by the Metal–Organic Framework UiO66-NH2. Angew. Chem. Int. Ed., 55, 6235–6238, 2016.
46. Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., Li, Z., An Amine-Functionalized Titanium Metal–Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angew. Chem. Int. Ed., 51, 3364–3367, 2012.
47. Shi, L., Wang,