Oil-in-Water Nanosized Emulsions for Drug Delivery and Targeting. Tamilvanan ShunmugaperumalЧитать онлайн книгу.
B.P. and Catherine, P. (2005), Nanoparticle silica‐stabilised oil‐in‐water emulsions: improving emulsion stability, Colloids Surf. A Physicochem. Eng. Aspects, 253, 105–115. doi:10.1016/j.colsurfa.2004.10.116
8 Binks, B.P., Desforges, A., and Duff, D.G. (2007b), Synergistic stabilization of emulsions by a mixture of surface‐active nanoparticles and surfactant, Langmuir, 23, 1098–1106. doi:10.1021/la062510y
9 Binks, B.P. and Lumsdon, S.O. (2000), Influence of particle wettability on the type and stability of surfactant‐free emulsions, Langmuir, 16, 8622–8631. doi:10.1021/la000189s
10 Binks, B.P., Rodrigues, J.A., and Frith, W.J. (2007a), Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant, Langmuir, 23, 3626–3636. doi:10.1021/la0634600
11 Buttle, S., Schmidt, R.H., and Müller, R.H. (2002), Production of amphotericin B emulsions based on SolEmuls technology, in: Fourth World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology, Florence, pp. 1535–1536.
12 Capek, I. (2004), Degradation of kinetically‐stable o/w emulsions, Adv. Colloid Interf. Sci., 107, 125–155. doi:10.1016/S0001‐8686(03)00115‐5
13 Cegnar, M., Kos, J., and Kristl, J. (2004), Cystatin incorporated in poly(lactide‐co‐glycolide) nanoparticles: development and fundamental studies on preservation of its activity, Eur. J. Pharm. Sci., 22, 357–364. doi:10.1016/j.ejps.2004.04.003
14 Cohen, T., Sauvageon‐Martre, H., Brossard, D. et al. (1996), Amphotericin B eye drops as a lipidic emulsion, Int. J. Pharm., 137, 249–254. doi:10.1016/0378‐5173(96)04473‐0
15 Constantinides, P.P., Han, J., and Davis, S.S. (2006), Advances in the use of tocols as drug delivery vehicles, Pharm. Res., 23, 243–255. doi:10.1007/s11095‐005‐9262‐9
16 Constantinides, P.P., Tustian, A., and Kessler, D.R. (2004), Tocol emulsions for drug solubilization and parenteral delivery, Adv. Drug Deliv. Rev., 56, 1243–1255. doi:10.1016/j.addr.2003.12.005
17 Cotlier, E., Baskin, M., and Kresca, L. (1975), Effects of lysophosphatidyl choline and phospholipase A on the lens, Invest. Ophthalmol. Vis. Sci., 14, 697–701.
18 Cui, F., Wang, Y., Wang, J. et al. (2007), Preparation of redispersible dry emulsion using Eudragit E100 as both solid carrier and unique emulsifier, Colloids Surf. A Physicochem. Eng. Aspects, 307, 137–141. doi:10.1016/j.colsurfa.2007.05.013.
19 Calvo, P., Remuñá‐López, C., Vila‐Jato, J.L. et al. (1997), Development of positively charged colloidal drug carriers: chitosan‐coated polyester nanocapsules and submicro‐emulsions, Colloid Polym. Sci., 275, 46–53. doi:10.1007/s003960050050
20 Davis, S.S. and Washington, C. (1988), Drug emulsion, European Patent 0,296, 845, A1.
21 Dale, P.J., Kijlstra, J., and Vincent, B. (2006), The temperature stability of single and mixed emulsions stabilized by nonionic surfactants, Colloids Surf. A Physicochem. Eng. Aspects, 291, 85–92. doi:10.1016/j.colsurfa.2006.06.016
22 Debevec, V., Srčič, S., and Horvat, M. (2018), Scientific, statistical, practical, and regulatory considerations in design space development, Drug Dev. Ind. Pharm., 44 (3), 349–364. doi:10.1080/03639045.2017.1409755
23 EMA (2014), Questions and answers on level of detail in the regulatory submissions, EMA/59240/December 10, 2014.
24 EMA (2017), Report from the EMA‐FDA QbD pilot program, EMA/213746/April 19, 2017.
25 Eskandar, N.G., Simovic, S., and Clive, A. (2009), Nanoparticle coated submicron emulsions: sustained in‐vitro release and improved dermal delivery of all‐trans‐retinol, Pharm. Res., 26, 1764–1775. doi:10.1007/s11095‐009‐9888‐0
26 Fahmy, R. Kona, R. Dandu, R. et al. (2012), Quality by design I: application of failure mode effect analysis (FMEA) and Plackett‐Burman design of experiments in the identification of “main factors” in the formulation and process design space for roller‐compacted ciprofloxacin hydrochloride immediate‐release tablets, AAPS PharmSciTech., 13 (4), 1243–1254. doi: 10.1208/s12249‐012‐9844‐x
27 FDA Guidance for Industry (2004) PAT‐a framework for innovative pharmaceutical development, manufacturing, and quality assurance, (https://www.fda.gov/media/71012/download, Accessed on June 16, 2019).
28 FDA Guidance for Industry (2006), Q8 pharmaceutical development, (https://www.fda.gov/media/71524/download, Accessed on June 16, 2019).
29 Ghate, V.M., Kodoth, A.K., Raja, S. et al. (2019), Development of MART for the rapid production of nanostructured lipid carriers loaded with all‐trans retinoic acid for dermal delivery, AAPS PharmSciTech., 20, 162. doi:10.1208/s12249‐019‐1307‐1
30 Goldstein, D., Gofrit, O., Nyska, A. et al. (2007a), Anti‐HER2 cationic immunoemulsion as a potential targeted drug delivery system for the treatment of prostate cancer, Cancer Res., 67, 269–275. doi:10.1158/0008‐5472.CAN‐06‐2731
31 Goldstein, D., Nassar, T., Lambert, G. et al. (2005), The design and evaluation of a novel targeted drug delivery system using cationic emulsion‐antibody conjugates, J. Control. Release, 108, 418–432. doi:10.1016/j.jconrel.2005.08.021
32 Goldstein, D., Sader, O., and Benita, S. (2007b), Influence of oil droplet surface charge on the performance of antibody‐emulsion conjugates, Biomed. Pharmacother., 61, 97–103. doi:10.1016/j.biopha.2006.08.005
33 Grigoriev, D.O. and Miller, R. (2009), Mono‐ and multilayer covered drops as carriers, Curr. Opin. Colloid Interface Sci., 14, 48–59. doi:10.1016/j.cocis.2008.03.003
34 Hagigit, T., Abdulrazik, M., Orucov, F. et al. (2010), Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye, J. Control. Release, 145 (3), 297–305. doi:10.1016/j.jconrel.2010.04.013
35 Hagigit, T., Nassar, T., Behar‐Cohen, F. et al. (2008), The influence of cationic lipid type on in vitro release kinetics of antisense oligonucleotide from cationic nanoemulsions, Eur. J. Pharm. Biopharm., 70 (1), 248–259. doi:10.1016/j.ejpb.2008.03.005
36 Han, J. and Washington, C. (2005), Partition of antimicrobial additives in an intravenous emulsion and their effect on emulsion physical stability, Int. J. Pharm., 288 (2), 263–271. doi:10.1016/j.ijpharm.2004.10.002
37 Hu, Z., Deng, Y., and Sun, Q. (2004), Synthesis of precipitated calcium carbonate nanoparticles using a two‐membrane system, Colloid J., 66 (6), 745–750. doi:10.1007/s10595‐005‐0017‐4
38 ICH (2005), Q9 quality risk management, (Available at http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q9/Step4/Q9_Guideline.pdf.) Accessed on August 1, 2019.
39 ICH (2008), Q10 pharmaceutical quality system, (Availabe at http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q10/Step4/Q10_Guideline.pdf.) Accessed on August 1, 2019.
40 ICH (2009), Q8(R2) pharmaceutical development. Part I: pharmaceutical development, and Part II: annex to pharmaceutical development, (Available at http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf.) Accessed on August 1, 2019.
41 Ishii, F. and Nii, T. (2005), Properties of various phospholipid mixtures as emulsifiers or dispersing agents in nanoparticle drug carrier preparation, Colloids Surf. B Biointerfaces, 41 (4), 257–262. doi:10.1016/j.colsurfb.2004.12.018
42 Joglekar, A.T. (1987), Product excellence through design of experiments, Cereal Foods World, 32, 857–868.
43 Jumaa, M., Furkert, F.H., and