Специфика взаимодействия тонкого и наноуровней микроструктурной организации веществ и их влияние на свойства материалов. Монография. Павел Борисович ШибаевЧитать онлайн книгу.
физическая структура (определяемая межмолекулярными взаимодействиями между молекулами низкомолекулярных веществ или фрагментами макромолекул высокомолекулярных соединений).
1.4.1. Характеристика смешанных (промежуточных) типов взаимодействия элементов электронно-ядерной структуры материала
Химическая связь – это совокупность сил, удерживающих нуклиды (ядра) или атомные остовы в химическом соединении. Характеристики химической связи в соединении атомов различных веществ и материалов на их основе определяет его химическую структуру и физико-химические свойства [36]. Различают три предельных вида химической связи: ковалентную, металлическую и ионную. Металлическая связь характерна для металлов, то есть для атомов элементов, характерными свойствами которых являются хорошая теплопроводность, электропроводность, металлический блеск. Для неметаллов характерна ковалентная связь. При взаимодействии неметалла и металла возникает гетероядерная ионная связь.
В зависимости от преобладания в веществе того или иного типа связи существуют три типа химических структур: преимущественно металлическая, преимущественно ионная и преимущественно ковалентная. Элементами металлической структуры являются катионы в узлах кристаллической решётки и обобществлённые электроны между ними. В металле максимальная стабильность структуры связана с максимальным координационным числом. Характерные структуры металлов представляют два типа плотной упаковки элементов с координационным числом, равным 12 и центрированной кубической структуры с координационным числом, равным 14 [37,38].
Элементами ионной структуры служат катионы и анионы в узлах кристаллической решётки, обобществленные электроны которой максимально смещены в сторону электроотрицательного элемента. Ионная связь обеспечивается кулоновским притяжением избыточных электрических зарядов противоположно заряженных ионов. Атомы металлов легко теряют свои внешние электроны, которые стремятся присоединить атомы неметаллов. Таким образом, могут возникнуть стабильные катионы и анионы, которые могут в основном сохранить свои электронные структуры при приближении друг к другу и образовании стабильной молекулы или кристалла [37]. В структуре ковалентных соединений элементами являются пара обобществленных электронов и ядра (в случае водорода – протоны) или атомные остовы, состоящие из ядра и внутренних электронов (в случае остальных атомов) [37].
В работе [39] рассмотрена связь между структурой и свойствами соединений на основе полимеров. Способность элементов образовывать полимеры зависит от таких факторов, как электроотрицательность (ЭО), гибридизация, электронная конфигурация, степень ковалентности (СК) связи между элементами, стерические факторы, координационным числом атомов элементов. Полимерным считается вещество, в котором наличествуют цепи с преимущественно ковалентными связями.