Всё об искусственном интеллекте за 60 минут. Питер Дж. БентлиЧитать онлайн книгу.
была неосязаемой и невыразимой, пока современная формальная логика не стала интерпретировать ее как манипуляцию формальными символами.
Логика – очень мощный инструмент представления фактов. Все, что выражено логически, должно быть или истинным, или ложным, например: идет дождь – правда; дует ветер – ложь. Логические операции позволяют нам формулировать более сложные идеи: если «идет дождь» – правда, а «дует ветер» – ложь, то «взять зонтик» – правда. Это логическое высказывание также может быть представлено в виде таблицы истинности:
Когда мы доказываем что-то в математике, мы показываем, что логические предположения гарантируют вывод. Математика построена на таких доказательствах. Поэтому, если у нас есть утверждения «все люди смертны» и «Сократ – человек», мы можем доказать, что «Сократ смертен».
Предикатная логика, более сложный и широко используемый тип логики, даже допускает превращение обычных предложений в своего рода логические обозначения (также известные как формальные логические высказывания).
Родоначальникам символического ИИ логика представлялась настолько всемогущей, что они считали, будто символическая логика – это все, что нужно для интеллекта.
Это убеждение было основано на идее, что человеческий разум лишь манипулирует символами. Исследователи утверждали, что наши представления об окружающем мире закодированы в мозге в виде символов. Идея стула и подушки может быть заключена в символах «стул» и «подушка» и абстрактных правилах, таких как «подушка может лежать на стуле» и «стул не находится на подушке».
Рассмотрим парадокс математика и философа Бертрана Рассела: «В некоей деревне живет брадобрей, который бреет всех жителей деревни, которые не бреются сами, и только их». Это парадокс, поскольку, если человек бреется сам, он не может брить себя в соответствии с правилом. Но если он не бреется сам, то должен брить себя согласно этому же правилу. В виде логического выражения это выглядит так:
Без паники! Если перевести на обычный язык, получится: «Существует x, являющийся человеком, и множество y, где y – человек, x бреет y тогда и только тогда, когда y не бреет y». Это полезно, так как этот вид предикатной логики позволяет строить доказательства. В этом случае можно выявить парадокс, спросив: «Бреет ли брадобрей сам себя?» Или, в логическом выражении, что получится, если x = y? Заменим x на y, и в результате «бреет (x, x)» и обратное утверждение «¬бреет (x, x)» будут истинными. Другими словами, человек должен брить сам себя и он не может брить сам себя одновременно – это парадокс. (Используя его, Рассел доказал, что математика неполна – то есть в ней невозможно доказать все).
Китайская комната
Однако некоторые философы не соглашались с подобным подходом. Они считали, что манипулирование символами кардинально отличается от действительного понимания