Remote C-H Bond Functionalizations. Группа авторовЧитать онлайн книгу.
class of phenol derivatives was also possible under the same meta‐cross‐coupling conditions of hydrocinnamic acids derivatives with arylboronic esters, although only a limited number of examples were demonstrated.
Scheme 2.46 meta‐C–H olefination of phenol derivatives.
Later in 2017, Zhou, Xu, and coworkers developed a nitrile‐based organosilicon template assisted meta‐C–H olefination of phenol derivatives in good yields with high meta‐selectivities under similar reaction conditions (Scheme 2.47) [44]. Importantly, the organosilicon linkage could be easily cleaved under mild conditions, and the directing template could be recovered under acidic conditions by using p‐toluene sulfonic acid.
Scheme 2.47 Organosilicon template assisted meta‐C–H olefination of phenol derivatives.
Source: Modified from Mi et al. [44].
Subsequently, Sun, Zhou, and coworkers achieved developed an Rh(III)‐catalyzed meta‐selective C–H olefination of phenol derivatives by using the same organosilicon template mentioned earlier (Scheme 2.48) [45]. A range of phenol derivatives and activated alkenes are viable in this reaction to produce meta‐olefinated phenol products in good yields with high meta‐selectivities.
Scheme 2.48 Rh(III)‐catalyzed meta‐C–H olefination of phenol derivatives.
Source: Modified from Mi et al. [45].
Recently, Xu, Jin, Yu, and coworkers developed bifunctional template assisted, palladium‐catalyzed meta‐selective C–H olefination of phenols (Scheme 2.49a), followed by nickel‐catalyzed ipso‐C–O activation and arylation (Scheme 2.49b) [46]. The sequential transformations could be carried out in a one‐pot. Thus, this bifunctional template strategy allowed for the expedited synthesis of multiply substituted arenes. Notably, the novel template could be readily synthesized from inexpensive cyanuric chloride and was easily installed and smoothly removed.
Scheme 2.49 (a) meta‐selective C–H olefination of phenols. (b) Nickel‐catalyzed ipso‐C–O activation and arylation.
Source: (b) Modified from Xu et al. [46].
Finally, Maiti and coworkers also developed a Pd‐catalyzed meta‐C–H olefination of 2‐phenyl phenol derivatives by using the 2‐cyanobenzoyl group as the directing template that was once employed by Li and coworkers for meta‐C–H olefination of phenylethylamines (Scheme 2.50) [47]. Although only a single 2‐phenyl phenol substrate was utilized, the scope of the olefins was broad.
Scheme 2.50 meta‐C–H olefination of 2‐phenyl phenol derivatives.
Source: Modified from Maity et al. [47].
2.2.6 Alcohol Derivatives
Alcohols are important organic compounds widely found in many drug molecules. In 2013, Tan and coworkers reported a meta‐C–H olefination of benzyl alcohols by using an effective bulky di‐isopropyl silyl ether tethered nitrile‐based template (Scheme 2.51) [48]. The template could be easily attached to the benzyl alcohol substrates and readily cleaved in situ with tetrabutylammonium fluoride (TBAF) under mild conditions, making the approach synthetically practical. Using the MPAA ligand Ac‐Gly‐OH in the presence of HFIP, a range of benzyl alcohols were meta‐olefinated smoothly with all substitution patterns on the aromatic ring. Moreover, the template was applicable to both primary and secondary alcohols with equal efficacy.
Scheme 2.51 meta‐C–H olefination of benzyl alcohols.
Source: Modified from Lee et al. [48].
To expand the potential of achieving site selectivity in C–H activation via the recognition of distal and geometric relationship between existing chelating groups and C
H bonds of similar reactivity in organic molecules, Yu and coworkers engineered the first pyridine‐based directing template that was effective for meta‐C–H olefination of benzyl and phenyl ethyl alcohols (Scheme 2.52) [49]. This remarkable breakthrough is impressive, since the pyridyl group has only been extensively utilized to assist the ortho‐CH bond activation previously. Notably, this novel template also enabled a new meta‐C–H iodination reaction by using DIH as the iodination reagent, which was not feasible with nitrile‐based directing templates previously (Scheme 2.53). The aryl iodide products are synthetically useful intermediates, since they are amenable to a wide range of transformations such as the transition‐metal‐catalyzed cross‐coupling reactions.Scheme 2.52 meta‐C–H olefination of benzyl and phenyl ethyl alcohols.
Source: Modified from Chu et al. [49].
Scheme 2.53 meta‐C–H iodination of benzyl and phenylethyl alcohols.
In 2017, Xu, Jin, and coworkers reported a Pd‐catalyzed remote meta‐C–H olefination of a wide range of arene‐tethered alcohols such as 2‐phenylethyl, 3‐phenylpropyl alcohols,