Aristotle: The Complete Works. Aristotle Читать онлайн книгу.
to A-E (in the first proof); since A-E is proved through A-D, and the ground is more certain than the conclusion.
Hence demonstration by fewer premisses is ceteris paribus superior. Now both affirmative and negative demonstration operate through three terms and two premisses, but whereas the former assumes only that something is, the latter assumes both that something is and that something else is not, and thus operating through more kinds of premiss is inferior.
(2) It has been proved that no conclusion follows if both premisses are negative, but that one must be negative, the other affirmative. So we are compelled to lay down the following additional rule: as the demonstration expands, the affirmative premisses must increase in number, but there cannot be more than one negative premiss in each complete proof. Thus, suppose no B is A, and all C is B. Then if both the premisses are to be again expanded, a middle must be interposed. Let us interpose D between A and B, and E between B and C. Then clearly E is affirmatively related to B and C, while D is affirmatively related to B but negatively to A; for all B is D, but there must be no D which is A. Thus there proves to be a single negative premiss, A-D. In the further prosyllogisms too it is the same, because in the terms of an affirmative syllogism the middle is always related affirmatively to both extremes; in a negative syllogism it must be negatively related only to one of them, and so this negation comes to be a single negative premiss, the other premisses being affirmative. If, then, that through which a truth is proved is a better known and more certain truth, and if the negative proposition is proved through the affirmative and not vice versa, affirmative demonstration, being prior and better known and more certain, will be superior.
(3) The basic truth of demonstrative syllogism is the universal immediate premiss, and the universal premiss asserts in affirmative demonstration and in negative denies: and the affirmative proposition is prior to and better known than the negative (since affirmation explains denial and is prior to denial, just as being is prior to not-being). It follows that the basic premiss of affirmative demonstration is superior to that of negative demonstration, and the demonstration which uses superior basic premisses is superior.
(4) Affirmative demonstration is more of the nature of a basic form of proof, because it is a sine qua non of negative demonstration.
26
Since affirmative demonstration is superior to negative, it is clearly superior also to reductio ad impossibile. We must first make certain what is the difference between negative demonstration and reductio ad impossibile. Let us suppose that no B is A, and that all C is B: the conclusion necessarily follows that no C is A. If these premisses are assumed, therefore, the negative demonstration that no C is A is direct. Reductio ad impossibile, on the other hand, proceeds as follows. Supposing we are to prove that does not inhere in B, we have to assume that it does inhere, and further that B inheres in C, with the resulting inference that A inheres in C. This we have to suppose a known and admitted impossibility; and we then infer that A cannot inhere in B. Thus if the inherence of B in C is not questioned, A’s inherence in B is impossible.
The order of the terms is the same in both proofs: they differ according to which of the negative propositions is the better known, the one denying A of B or the one denying A of C. When the falsity of the conclusion is the better known, we use reductio ad impossible; when the major premiss of the syllogism is the more obvious, we use direct demonstration. All the same the proposition denying A of B is, in the order of being, prior to that denying A of C; for premisses are prior to the conclusion which follows from them, and ‘no C is A’ is the conclusion, ‘no B is A’ one of its premisses. For the destructive result of reductio ad impossibile is not a proper conclusion, nor are its antecedents proper premisses. On the contrary: the constituents of syllogism are premisses related to one another as whole to part or part to whole, whereas the premisses A-C and A-B are not thus related to one another. Now the superior demonstration is that which proceeds from better known and prior premisses, and while both these forms depend for credence on the not-being of something, yet the source of the one is prior to that of the other. Therefore negative demonstration will have an unqualified superiority to reductio ad impossibile, and affirmative demonstration, being superior to negative, will consequently be superior also to reductio ad impossibile.
27
The science which is knowledge at once of the fact and of the reasoned fact, not of the fact by itself without the reasoned fact, is the more exact and the prior science.
A science such as arithmetic, which is not a science of properties qua inhering in a substratum, is more exact than and prior to a science like harmonics, which is a science of pr,operties inhering in a substratum; and similarly a science like arithmetic, which is constituted of fewer basic elements, is more exact than and prior to geometry, which requires additional elements. What I mean by ‘additional elements’ is this: a unit is substance without position, while a point is substance with position; the latter contains an additional element.
28
A single science is one whose domain is a single genus, viz. all the subjects constituted out of the primary entities of the genus-i.e. the parts of this total subject-and their essential properties.
One science differs from another when their basic truths have neither a common source nor are derived those of the one science from those the other. This is verified when we reach the indemonstrable premisses of a science, for they must be within one genus with its conclusions: and this again is verified if the conclusions proved by means of them fall within one genus-i.e. are homogeneous.
29
One can have several demonstrations of the same connexion not only by taking from the same series of predication middles which are other than the immediately cohering term e.g. by taking C, D, and F severally to prove A-B—but also by taking a middle from another series. Thus let A be change, D alteration of a property, B feeling pleasure, and G relaxation. We can then without falsehood predicate D of B and A of D, for he who is pleased suffers alteration of a property, and that which alters a property changes. Again, we can predicate A of G without falsehood, and G of B; for to feel pleasure is to relax, and to relax is to change. So the conclusion can be drawn through middles which are different, i.e. not in the same series-yet not so that neither of these middles is predicable of the other, for they must both be attributable to some one subject.
A further point worth investigating is how many ways of proving the same conclusion can be obtained by varying the figure,
30
There is no knowledge by demonstration of chance conjunctions; for chance conjunctions exist neither by necessity nor as general connexions but comprise what comes to be as something distinct from these. Now demonstration is concerned only with one or other of these two; for all reasoning proceeds from necessary or general premisses, the conclusion being necessary if the premisses are necessary and general if the premisses are general. Consequently, if chance conjunctions are neither general nor necessary, they are not demonstrable.
31
Scientific knowledge is not possible through the act of perception. Even if perception as a faculty is of ‘the such’ and not merely of a ‘this somewhat’, yet one must at any rate actually perceive a ‘this somewhat’, and at a definite present place and time: but that which is commensurately universal and true in all cases one cannot perceive, since it is not ‘this’ and it is not ‘now’; if it were, it would not be commensurately universal-the term we apply to what is always and everywhere. Seeing, therefore, that demonstrations are commensurately universal and universals imperceptible, we clearly cannot obtain scientific knowledge by the act of perception: nay, it is obvious that even if it were possible to perceive that a triangle has its angles equal to two right angles, we should still be looking for a demonstration-we should not (as some say) possess knowledge of it; for perception must be of a particular, whereas scientific knowledge involves the recognition of the commensurate universal. So if we were on