Engineering Solutions for CO2 Conversion. Группа авторовЧитать онлайн книгу.
of different alternative stripper configurations for post combustion CO2 capture. Chem. Eng. Res. Des. 89 (8): 1229–1236.
48 48 Diego, M.E., Bellas, J.‐M., and Pourkashanian, M. (2017). Process analysis of selective exhaust gas recirculation for CO2 capture in natural gas combined cycle power plants using amines. J. Eng. Gas Turbines Power 139 (12): 121701.
49 49 Gonzalez Díaz, A., Sanchez, E., Gonzalez Santalób, J.M. et al. (2014). On the integration of sequential supplementary firing in natural gas combined cycle for CO2‐enhanced oil recovery: a technoeconomic analysis for Mexico. Energy Procedia 63: 7558–7567.
50 50 Jonshagen, K., Sipöcz, N., and Genrup, M. (2010). A novel approach of retrofitting a combined cycle with post combustion CO2 capture. J. Eng. Gas Turbines Power 133 (1): 011703.
51 51 IEAGHG (2012). Operating Flexibility of Power Plants with CCS.
52 52 Brouwer, A.S., van den Broek, M., Seebregts, A., and Faaij, A. (2015). Operational flexibility and economics of power plants in future low‐carbon power systems. Appl. Energy 156: 107–128.
53 53 Johnsson, F., Odenberger, M., and Göransson, L. (2014). Challenges to integrate CCS into low carbon electricity markets. Energy Procedia 63: 7485–7493.
54 54 Gonzalez‐Salazar, M.A., Kirsten, T., and Prchlik, L. (2018). Review of the operational flexibility and emissions of gas‐ and coal‐fired power plants in a future with growing renewables. Renewable Sustainable Energy Rev. 82: 1497–1513.
55 55 Montañés, R.M., Korpås, M., Nord, L.O., and Jaehnert, S. (2016). Identifying operational requirements for flexible CCS power plant in future energy systems. Energy Procedia 86 (1876): 22–31.
56 56 Rezazadeh, F., Gale, W.F., Akram, M. et al. (2016). Performance evaluation and optimisation of post combustion CO2 capture processes for natural gas applications at pilot scale via a verified rate‐based model. Int. J. Greenhouse Gas Control 53: 243–253.
57 57 Hauger, S.O., Flø, N.E., Kvamsdal, H. et al. (2019). Demonstration of non‐linear model predictive control of post‐combustion CO2 capture processes. Comput. Chem. Eng. 123: 184–195.
58 58 Lawal, A., Wang, M., Stephenson, P., and Obi, O. (2012). Demonstrating full‐scale post‐combustion CO2 capture for coal‐fired power plants through dynamic modelling and simulation. Fuel 101: 115–128.
59 59 Montañés, R.M., GarÐarsdóttir, S., Normann, F. et al. (2017). Demonstrating load‐change transient performance of a commercial‐scale natural gas combined cycle power plant with post‐combustion CO2 capture. Int. J. Greenhouse Gas Control 63: 158–174.
60 60 Gardarsdóttir, S., Montañés, R.M., Normann, F. et al. (2017). Effects of CO2‐absorption control strategies on the dynamic performance of a supercritical pulverized‐coal‐fired power plant. Ind. Eng. Chem. Res. 56 (15): 4415–4430.
61 61 Bui, M., Gunawan, I., Verheyen, V. et al. (2016). Flexible operation of CSIRO's post‐combustion CO2 capture pilot plant at the AGL Loy Yang power station. Int. J. Greenhouse Gas Control 48: 188–203.
62 62 Montañés, R.M., Flø, N.E., Dutta, R. et al. (2017). Dynamic process model development and validation with transient plant data collected from an MEA test campaign at the CO2 Technology Center Mongstad. Energy Procedia 114 (1876): 1538–1550.
63 63 Panahi, M. and Skogestad, S. (2012). Economically efficient operation of CO2 capturing process. Part II. Design of control layer. Chem. Eng. Process. Process Intensif. 52: 112–124.
64 64 Marx‐Schubach, T. and Schmitz, G. (2018). Dynamic simulation and investigation of the startup process of a postcombustion‐capture plant. Ind. Eng. Chem. Res. 57 (49): 16751–16762.
65 65 Martinez Castilla, G., Biermann, M., Montañés, R.M. et al. (2019). Integrating carbon capture into an industrial combined‐heat‐and‐power plant: performance with hourly and seasonal load changes. Int. J. Greenhouse Gas Control 82: 192–203.
66 66 Mechleri, E., Fennell, P.S., and Mac Dowell, N. (2017). Optimisation and evaluation of flexible operation strategies for coal‐ and gas‐CCS power stations with a multi‐period design approach. Int. J. Greenhouse Gas Control 59: 24–39.
67 67 IEAGHG (2013). Iron and Steel CCS Study (techn‐economics integrated steel mill). Report 2013/04.
68 68 IEAGHG (2013). Deployment of CCS in the cement industry, 2013/19.
69 69 CEMCAP (2018). D 4.6 – Comparative techno‐economic analysis of CO2 capture in cement plants, Deliverable 4.6, 2018.
70 70 Skagestad, R., Normann, F., Garðarsdóttir, S.Ó. et al. (2017). CO2 stCap – cutting cost of CO2 capture in process industry. Energy Procedia 114 (1876): 6303–6315.
71 71 IEAGHG (2018). Cost of CO2 capture in the industrial sector: cement and iron and steel industries, 2018/03.
72 72 Jansen, D., Gazzani, M., Manzolini, G. et al. (2015). Pre‐combustion CO2 capture. Int. J. Greenhouse Gas Control 40: 167–187.
73 73 Rackley, S.A. (2009). Carbon Capture and Storage. Butterworth‐Heinemann.
74 74 IEA. CO2 Capture and Storage: A Key Carbon Abatement Option. Paris: OECD Publishing.
75 75 Mathias, P.M., Reddy, S., Smith, A., and Afshar, K. (2013). A guide to evaluate solvents and processes for post‐combustion CO2 capture. Energy Procedia 37: 1863–1870.
76 76 Kvamsdal, H.M., Ehlers, S., Kather, A. et al. (2016). Optimizing integrated reference cases in the OCTAVIUS project. Int. J. Greenhouse Gas Control 50: 23–36.
Notes
1 1 https://www.iea.org/etp/explore/ (visited in January 2019).
2 2 Under specific arrangements.
3 3 The Global Status of CCS, GCCSI 2018 https://indd.adobe.com/view/2dab1be7-edd0-447d-b020-06242ea2cf3b.
5 5 https://www.netl.doe.gov/project-information?p=FE0026580.
6 6 www.cleanker.eu.
7 7 https://3d-ccus.com/.
2 Advancing CCSU Technologies with Computational Fluid Dynamics (CFD): A Look at the Future by Linking CFD and Process Simulations
Daniel Sebastia‐Saez1, Evgenia Mechleri1, and Harvey Arellano‐García1
1University of Surrey, Department of Chemical and Process Engineering, GU2 7XH, Guildford, United Kingdom
2Brandenburgische Technische Universität Cottbus‐Senftenberg, LS Prozess‐ und Anlagentechnik, D‐03046, Cottbus, Germany
2.1 Sweep Across the General Simulation Techniques Available
The application of simulation techniques to the study of carbon capture, storage and utilization (CCSU) underpins significant advantages such as gaining detailed insight into the underlying phenomena and reducing the experimental load and its associated risks. Simulation methods of interest for CCSU applications include those dealing with quantum mechanics, molecular dynamics, continuum mechanics (computational fluid dynamics, also known as CFD), and process engineering simulations, each with different length and time scales as illustrated in Figure 2.1.
At