Эротические рассказы

Engineering Solutions for CO2 Conversion. Группа авторовЧитать онлайн книгу.

Engineering Solutions for CO2 Conversion - Группа авторов


Скачать книгу
Fernandes, J., Simões, P.C., Mota, J.P.B., and Saatdjian, E. (2008). Applications of CFD in the study of supercritical fluid extraction with structured packing: dry pressure drop calculations. J. Supercrit. Fluids 47: 17–24.

      20 20 Fernandes, J., Lisboa, P.F., Simões, P.C. et al. (2009). Application of CFD in the study of supercritical fluid extraction with structured packing: wet pressure drop calculations. J. Supercrit. Fluids 50: 61–68.

      21 21 Isoz, M. and Haidl, J. (2018). Computational‐fluid‐dynamics analysis of gas flow through corrugated‐sheet‐structured packing: effects of packing geometry. Ind. Eng. Chem. Res. 57: 11785–11796.

      22 22 Armstrong, L.M., Gu, S., and Luo, K.H. (2013). Dry pressure drop prediction within Montz‐pak B1‐250.45 packing with varying inclination angles and geometries. Ind. Eng. Chem. Res. 52 (11): 4372–4378.

      23 23 Owens, S.A., Perkins, M.R., and Eldridge, R.B. (2013). Computational fluid dynamics simulation of structured packing. Ind. Eng. Chem. Res. 52 (5): 2032–2045.

      24 24 Haroun, Y., Raynal, L., and Alix, P. (2014). Prediction of effective area and liquid hold‐up in structured packings by CFD. Chem. Eng. Res. Des. 92: 2247–2254.

      25 25 Lautenschleger, A., Olenberg, A., and Kenig, E.Y. (2015). A systematic CFD‐based method to investigate and optimise novel structured packings. Chem. Eng. Sci. 122: 452–464.

      26 26 Sebastia‐Saez, D., Gu, S., Ranganathan, P., and Papadikis, K. (2015). Meso‐scale CFD study of the pressure drop, liquid hold‐up, interfacial area and mass transfer in structured packing materials. Int. J. Greenhouse Gas Control 42: 388–399.

      27 27 Li, Q., Wang, T., Dai, C., and Lei, Z. (2016). Hydrodynamics of novel structured packings: an experimental and multi‐scale CFD study. Chem. Eng. Sci. 143: 23–35.

      28 28 Yang, L., Liu, F., Saito, K., and Liu, K. (2018). CFD modeling on hydrodynamic characteristics of multiphase counter‐current flow in a structured packed bed for post‐combustion CO2 capture. Energies 11 (11): 3103.

      29 29 Asendrych, D., Niegodajew, P., and Drobniak, S. (2013). CFD modelling of CO2 capture in a packed bed by chemical absorption. Chem. Process Eng. 34 (2): 269–282.

      30 30 Niegodajew, P. and Asendrych, D. (2016). Amine based CO2 capture – CFD simulation of absorber performance. Appl. Math. Modell. 40: 10222–10237.

      31 31 Kim, J., Pham, D.A., and Lim, Y.I. (2016). Gas‐liquid multiphase computational fluid dynamics (CFD) of amine absorption column with structured packing for CO2 capture. Comput. Chem. Eng. 88: 39–49.

      32 32 Gu, F., Liu, C.J., Yuan, X.G., and Yu, G.C. (2004). CFD simulation of liquid film flow on inclined plates. Chem. Eng. Technol. 27: 1099–1104.

      33 33 Valluri, P., Matar, O.M., Hewitt, G.F., and Mendes, M.A. (2005). Thin film flow over structured packings at moderate Reynolds numbers. Chem. Eng. Sci. 60 (7): 1965–1975.

      34 34 Ataki, A. and Bart, H.J. (2006). Experimental and CFD simulation study for the wetting of a structured packing element. Chem. Eng. Technol. 29 (3): 336–347.

      35 35 Haroun, Y., Raynal, L., and Legendre, D. (2012). Mass transfer and liquid hold‐up determination in structured packing by CFD. Chem. Eng. Sci. 75: 342–348.

      36 36 Iso, Y., Huang, J., Kato, M. et al. (2013). Numerical and experimental study on liquid film flows on packing elements in absorbers for post‐combustion CO2 capture. Energy Procedia 37: 860–868.

      37 37 Sebastia‐Saez, D., Reina, T.R., and Arellano‐Garcia, H. (2017). Numerical modelling of braiding and meandering instabilities in gravity‐driven liquid rivulets. Chem. Ing. Tech. 89 (11): 1515–1522.

      38 38 Sun, H., Wu, C., Shen, B. et al. (2018). Progress in the development and application of CaO‐based adsorbents for CO2 capture – a review. Mater. Today Sustainability1–2: 1–27.

      39 39 Atsonios, K., Zeneli, M., Nikolopoulos, A. et al. (2015). Calcium looping process simulation based on an advanced thermodynamic model combined with CFD analysis. Fuel 153: 370.

      40 40 Abbasi, E., Abbasian, J., and Arastoopour, H. (2015). CFD‐PBE numerical simulation of CO2 capture using MgO‐based sorbent. Powder Technol. 286: 616–628.

      41 41 Ryan, E.M., DeCroix, D., Breault, R. et al. (2013). Multi‐phase CFD modeling of solid sorbent carbon capture system. Powder Technol. 242: 117–134.

      42 42 Barelli, L., Bidini, G., and Gallorini, F. (2016). CO2 capture with solid sorbent: CFD modelling of an innovative reactor concept. Appl. Energy 162: 58–67.

      43 43 Sornumpol, R., Uraisakul, W., Kuchonthara, P. et al. (2017). CFD simulation of fuel reactor in chemical looping combustion. Energy Procedia 138: 979–984.

      44 44 Kim, M., Na, J., Park, S. et al. (2018). Modeling and validation of a pilot‐scale aqueous mineral carbonation reactor for carbon capture using computational fluid dynamics. Chem. Eng. Sci. 177: 301–312.

      45 45 Chen, Q., Rosner, F., Rao, A. et al. (2019). Simulation of elevated temperature solid sorbent CO2 capture for pre‐combustion applications using computational fluid dynamics. Appl. Energy 237: 314–325.

      46 46 Ghadirian, E., Abbasian, J., and Arastoopour, H. (2019). CFD simulation of gas and particle flow and a carbon capture process using a circulating fluidized bed (CFB) reacting loop. Powder Technol. 344: 27–35.

      47 47 Wang, S., Hu, B., Jin, C. et al. (2019). Dense discrete phase model simulations of CO2 capture process in a fluidized bed absorber with potassium‐based solid sorbent. Powder Technol. 345: 260–266.

      48 48 Wu, F., Argyle, M.D., Dellenback, P.A., and Fan, M. (2018). Progress in O2 separation for oxy‐fuel combustion–a promising way for cost‐effective CO2 capture: a review. Prog. Energy Combust. Sci. 67: 188–205.

      49 49 Wu, Y., Liu, D., Duan, L. et al. (2018). Three‐dimensional CFD simulation of oxy‐fuel combustion in a circulating fluidized bed with warm flue gas recycle. Fuel 216: 596–611.

      50 50 Bhuiyan, A.A. and Naser, J. (2015). CFD modelling of co‐firing of biomass with coal under oxy‐fuel combustion in a large scale power plant. Fuel 159: 150–168.

      51 51 Gharebaghi, M., Irons, M.R.A., Ma, L. et al. (2011). Large eddy simulation of oxy‐coal combustion in an industrial combustion test facility. Int. J. Greenhouse Gas Control5S1: S100–S110.

      52 52 Mayr, B., Prieler, R., Demuth, M. et al. (2015). CFD and experimental analysis of a 115 kW natural gas fired lab‐scale furnace under oxy‐fuel and air‐fuel conditions. Fuel 159: 864–875.

      53 53 Carrasco‐Maldonado, F., Bakken, J., Ditaranto, M. et al. (2017). Oxy‐fuel burner investigations for CO2 capture in cement plants. Energy Procedia 120: 120–125.

      54 54 Edge, P.J., Heggs, P.J., Pourkashanian, M., and Stephenson, P.L. (2013). Integrated fluid dynamics‐process modelling of a coal‐fired power plant with carbon capture. Appl. Therm. Eng. 60: 456–464.

      55 55 Fei, Y., Black, S., Szuhánszki, J. et al. (2015). Evaluation of the potential of retrofitting a coal power plant to oxi‐firing using CFD and process co‐simulation. Fuel Process. Technol. 131: 45–58.

      56 56 He, D., Jiang, P., Lun, Z. et al. (2018). Pore scale CFD simulation of supercritical carbon dioxide drainage process in porous media saturated with water. Energy Sources Part A https://doi.org/10.1080/15567036.2018.1549155.

      57 57 Dezfully, M.G., Jafari, A., and Gharibshahi, R. (2015). CFD simulation of enhanced oil recovery using nanosilica/supercritical CO2. Adv. Mater. Res. 1104: 81–86.

      58 58 Gharibshahi, R., Jafari, A., and Ahmadi, H. (2019). CFD investigation of enhanced extra‐heavy oil recovery using metallic nanoparticles/steam injection in a micromodel with random pore distribution. J. Pet. Sci. Eng. 174: 374–383.

      59 59 Engelbrecht, N., Chiuta, S., Everson, R.C. et al. (2017). Experimentation and CFD modelling of a microchannel reactor for carbon dioxide methanation. Chem. Eng. J. 313: 847–857.

      60 60


Скачать книгу
Яндекс.Метрика