Engineering Solutions for CO2 Conversion. Группа авторовЧитать онлайн книгу.
of membranes have been summarized in this chapter, together with the outline of the main strategies and novel solutions toward the CO2 valorization.
Therefore, the main issues concerning the most promising concepts, their particularities and properties, as well as their advantages and drawbacks when considering their industrial application have been presented. Also, a discussion on how these options can be integrated into the existing engineering layouts has been performed. This led to the presentation of some of the most advanced developments up to date, with an extended description of their operating concepts, and how their implementation can help to the effective valorization of CO2 while reducing the emission problem.
It is clear that many research groups are working to develop new materials to enhance these processes; however, more efforts are necessary from the research and exploitation point of view of this technology in order to promote membranes in an industrial way.
References
1 1 IEA (2020). CO2 Emissions from Fuel Combustion: Overview. Paris: IEA. https://www.iea.org/reports/co2-emissions-from-fuel-combustion-overview.
2 2 Yu, X., Yang, J., Yan, J., and Tu, S. (2015). Membrane technologies for CO2 capture. In: Handbook of Clean Energy Systems (ed. J. Yan), 1–13. Wiley.
3 3 Remiro‐Buenamañana, S. and García, H. (2019). ChemCatChem 11 (1): 342–356.
4 4 Mulder, J. (2013). Basic Principles of Membrane Technology. Netherlands: Springer.
5 5 Mohanty, K. and Purkait, M.K. (2011). Membrane Technologies and Applications. CRC Press.
6 6 Paidar, M., Fateev, V., and Bouzek, K. (2016). Electrochim. Acta 209: 737–756.
7 7 Li, H., Caravella, A., and Xu, H.Y. (2016). J. Mater. Chem. A 4 (37): 14069–14094.
8 8 Amano, M., Nishimura, C., and Komaki, M. (1990). Effects of high concentration CO and CO2 on hydrogen permeation through the palladium membrane. Mater. Trans. JIM 31: 404–408.
9 9 O'Brien, C.P. and Lee, I.C. (2017). J. Phys. Chem. C 121 (31): 16864–16871.
10 10 Brunetti, A. and Fontananova, E. (2019). J. Nanosci. Nanotechnol. 19 (6): 3124–3134.
11 11 Pomilla, F.R., Brunetti, A., Marcì, G. et al. (2018). ACS Sustainable Chem. Eng. 6 (7): 8743–8753.
12 12 Mason, E.A. (1991). J. Membr. Sci. 60 (2): 125–145.
13 13 Mitchell, J.K. (1995). J. Membr. Sci. 100 (1): 11–16.
14 14 Koros, W.J. and Fleming, G.K. (1993). J. Membr. Sci. 83 (1): 1–80.
15 15 Wijmans, J.G. and Baker, R.W. (1995). J. Membr. Sci. 107 (1): 1–21.
16 16 Baker, R.W. (2012). Membrane Technology and Applications, 3e. Wiley.
17 17 Tanaka, K., Kita, H., Okano, M., and Okamoto, K.‐i. (1992). Polymer 33 (3): 585–592.
18 18 White, R.P. and Lipson, J.E.G. (2016). Macromolecules 49 (11): 3987–4007.
19 19 Han, Y. and Ho, W.S.W. (2018). Chin. J. Chem. Eng. 26 (11): 2238–2254.
20 20 Zhao, L., Weber, M., and Stolten, D. (2013). Energy Procedia 37: 1125–1134.
21 21 Yave, W. and Car, A. (2011). Chapter 6: Polymeric membranes for post‐combustion carbon dioxide (CO2) capture. In: Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications (eds. A. Basile and S.P. Nunes), 160–183. Woodhead Publishing.
22 22 Ockwig, N.W. and Nenoff, T.M. (2007). Chem. Rev. 107 (10): 4078–4110.
23 23 Weigelt, F., Escorihuela, S., Descalzo, A. et al. (2019). Membranes 9 (4): 51.
24 24 Escorihuela, S., Tena, A., Shishatskiy, S. et al. (2018). Membranes 8 (1): 16.
25 25 He, X. (2016). Membranes for natural gas sweetening. In: Encyclopedia of Membranes (eds. E. Drioli and L. Giorno), 1266–1267. Berlin, Heidelberg: Springer Berlin Heidelberg.
26 26 Robeson, L.M. (1991). J. Membr. Sci. 62 (2): 165–185.
27 27 Robeson, L.M. (2008). J. Membr. Sci. 320 (1): 390–400.
28 28 Kim, S. and Lee, Y.M. (2013). Curr. Opin. Chem. Eng. 2 (2): 238–244.
29 29 Budd, P.M., Msayib, K.J., Tattershall, C.E. et al. (2005). J. Membr. Sci. 251 (1): 263–269.
30 30 Park, H.B., Jung, C.H., Lee, Y.M. et al. (2007). Science 318 (5848): 254.
31 31 Perrin, N., Dubettier, R., Lockwood, F. et al. (2015). Appl. Therm. Eng. 74: 75–82.
32 32 Lupion, M., Alvarez, I., Otero, P. et al. (2013). Ghgt‐11 37: 6179–6188.
33 33 Monne, J. and Prinet, C. (2013). Ghgt‐11 37: 6444–6457.
34 34 Smart, S., Lin, C.X.C., Ding, L. et al. (2010). Energy Environ. Sci. 3 (3): 268–278.
35 35 Takahashi, T., Esaka, T., and Iwahara, H. (1976). J. Solid State Chem. 16 (3–4): 317–323.
36 36 Cales, B. and Baumard, J.F. (1982). J. Mater. Sci. 17 (11): 3243–3248.
37 37 Cales, B. and Baumard, J.F. (1984). J. Electrochem. Soc. 131 (10): 2407–2413.
38 38 Bouwmeester, H. and Burggraaf, A. (1997). Chapter 14: Dense ceramic membranes for oxygen separation. In: CRC Handbook of Solid State Electrochemistry (eds. P.J. Gellings and H. Bouwmeester), 435–528. Boca Raton, FL: CRC Press.
39 39 Verkerk, M.J., Hammink, M.W.J., and Burggraaf, A.J. (1983). J. Electrochem. Soc. 130 (1): 70–78.
40 40 Kuklja, M.M., Kotomin, E.A., Merkle, R. et al. (2013). Phys. Chem. Chem. Phys. 15 (15): 5443–5471.
41 41 Bouwmeester, H.J.M., Kruidhof, H., and Burggraaf, A.J. (1994). Solid State Ionics 72, Part 2: 185–194.
42 42 Kharton, V.V., Tsipis, E.V., Yaremchenko, A.A. et al. (2003). J. Solid State Electrochem. 7 (8): 468–476.
43 43 Shaula, A.L., Kolotygin, V.A., Naumovich, E.N. et al. (2013). Oxygen ionic transport in Brownmillerite‐type Ca2Fe2O5‐delta and calcium ferrite‐based composite membranes. In: Oxide Materials for Electronic Engineering – Fabrication, Properties and Applications, vol. 200 (eds. S. Ubizskii, L. Vasylechko and Y. Zhydachevskii), 286–292. Trans Tech Publications Ltd.
44 44 Xue, J., Liao, Q., Chen, W. et al. (2015). J. Mater. Chem. A 3 (37): 19107–19114.
45 45 Bochkov, D.M., Kharton, V.V., Kovalevsky, A.V. et al. (1999). Solid State Ionics 120 (1): 281–288.
46 46 Baumann, S., Serra, J.M., Lobera, M.P. et al. (2011). J. Membr. Sci. 377 (1–2): 198–205.
47 47 Luo, H., Jiang, H., Klande, T. et al. (2012). Chem. Mater. 24 (11): 2148–2154.
48 48 Luo, H., Efimov, K., Jiang, H. et al. (2011). Angew. Chem. Int. Ed. 50 (3): 759–763.
49 49 Balaguer, M., Garcia‐Fayos, J., Solis, C., and Serra, J.M. (2013). Chem. Mater. 25 (24): 4986–4993.
50 50 Garcia‐Fayos, J., Balaguer, M., and Serra, J.M. (2015). ChemSusChem 8 (24): 4242–4249.
51 51 Gaudillere, C., Garcia‐Fayos, J., Balaguer, M., and Serra, J.M. (2014). ChemSusChem 7 (9): 2554–2561.
52 52 Engels, S., Beggel, F., Modigell, M., and Stadler, H. (2010). J. Membr. Sci. 359 (1–2): 93–101.
53 53 Stadler, H., Beggel, F., Habermehl, M. et al. (2011). Int. J. Greenhouse Gas Control 5 (1): 7–15.
54 54 Kelly, S.M., Kromer, B.R., Litwin, M.M., et al. (2013). Synthesis gas method and apparatus. US Patent 8,349,214, filed 08 July 2011 and issued 08 January 2012.
55 55 John Repasky, D.M., Armstrong, P., and Carolan, M. (2014). ITM technology for carbon capture on natural gas and hybrid power systems. In Workshop on Technology Pathways Forward for Carbon Capture & Storage on Natural Gas Power Systems, Washington DC (22 April 2014).
56 56