The Barnet Book of Photography: A Collection of Practical Articles. VariousЧитать онлайн книгу.
The negative which, if it has been previously dried, must be soaked in water for some time until it is thoroughly and uniformly wetted, is placed in some fresh hypo solution (the ordinary fixing-bath solution diluted with an equal volume of water) to which a small quantity of the ferricyanide solution has been added, and the dish is rocked repeatedly to ensure uniform action. The rapidity of the reducing action depends on the proportion of ferricyanide solution added, and it is very important not to add too much, otherwise the process gets out of control and reduction goes too far. The image should be carefully watched and the plate removed from the solution and rapidly washed before the apparent reduction is quite as great as it is intended to be. It is much better to stop too soon than too late, because if it is found that a little further reduction is necessary, the plate can be again immersed in the hypo and ferricyanide.
The ferricyanide reducer can be applied locally for reducing high-lights, halated windows, etc., and this is often very valuable, especially in the case of under-exposed negatives. A small quantity of hypo and ferricyanide solution is mixed in a measuring glass or some other suitable vessel. The plate is immersed in plain hypo solution in a white dish for a short time and is then raised by one corner or one edge until the part to be reduced is above the solution. The mixture of hypo and ferricyanide is carefully applied with a camel's hair brush to the parts that are too opaque, and after a few moments the plate is allowed to slip back into the hypo solution and the dish is rocked. If the reduction is not sufficient, the same proceeding is gone through as often as necessary. The reducer should not be allowed to act too long before putting the plate back into the hypo, otherwise the reduction may spread further than is desired. Further, the reducer must not be too strong (i.e., contain too much ferricyanide), otherwise it will produce brownish stains and the action may be too energetic.
The other reducer is known as Belitzski's reducer, and is made up as follows:—
Ferric potassium oxalate | 1 | oz. or | 5 | parts5 |
Sodium sulphite | 1 | oz. or | 4 | parts |
Oxalic acid | ¼ | oz. or | 1 | part |
Hypo solution (25 in 100) | 5 | oz. or | 25 | parts |
Water | 20 | oz. or | 100 | parts |
[5] The formula in "parts" does not strictly correspond with that in ounces, but the difference is immaterial.
The constituents must be dissolved in water in the order given. The solution can be used at once and it keeps fairly well if protected from light, in well corked bottles filled up to the neck.
INTENSIFICATION.
Intensification is a process in which the opacity of the image is increased by adding some fresh matter, metallic or otherwise, to the reduced silver that constitutes the developed image.
The usual plan is to bleach the image by means of a solution of mercuric chloride (mercury perchloride or corrosive sublimate), which converts the dark-coloured silver into a white mixture of silver chloride and mercurous chloride, and this is subsequently treated with some re-agent which will reconvert the image into a dark product of greater opacity than the original.
It is absolutely essential to successful intensification that the negative be completely fixed and completely washed after fixing, for any trace of hypo left in the film will give rise to brown stains. It is also important, in order to prevent stains of another sort and to secure uniform action, that the mercuric chloride solution be mixed with a small quantity of hydrochloric acid. Too much acid will cause frilling. If the negative has been dried it must be immersed in water for, as a rule, not less than half-an-hour, in order that it may be thoroughly and uniformly wetted.
Mercuric Chloride Solution. | ||||
Mercuric chloride | 1 | oz. or | 5 | parts |
Hydrochloric acid | 1½ | drachms or | 1 | part |
Water to make up to | 20 | oz. or | 100 | parts |
When uniform intensification is required the negative is allowed to remain in this solution until it is completely bleached. If, however, it is desired to intensify the shadows more than the high-lights, the plate should be removed from the solution as soon as the shadows have bleached, and should be rapidly washed in order to stop the action on the more opaque parts of the image.
In either case the negative must be thoroughly washed after bleaching, and the water used must be soft water. Hard water tends to produce a precipitate of the mercury salt in the film, which may subsequently lead to stain or fog.
Perhaps the best plan of all, when constant results are desired, is to treat the bleached negative with the ferrous oxalate developer, which will gradually convert the white image into a black one, after which the plate is thoroughly washed and dried. It is recommended that the first water used for washing should be slightly acidified with oxalic acid.
Instead of using ferrous oxalate the bleached plate may be treated with a weak solution of ortol or metol to which some sodium carbonate (soda crystals) solution has been added, but no sulphite. After the image has blackened completely the plate is washed.
With any of these methods if the first intensification is not sufficient, the plate may be again bleached with the mercury solution and the process repeated.
An old method, frequently used, is to treat the bleached plate with dilute ammonia, which converts the white image into a dark brown one of very considerable printing opacity. The results are often very good, but are somewhat uncertain, since the precise effect obtained depends on the strength of the ammonia solution and the time during which it is allowed to act. With somewhat strong ammonia, allowed to act for a fairly long time, part of the intensification first produced is removed. This affects the shadows more strongly than the lights and the result is to increase the contrast of the negative, which is very useful for certain purposes.
The negatives intensified with mercury solution followed by ammonia are more liable to spontaneous change and deterioration than those intensified with mercury solution followed by one of the developers. The latter, in fact, if properly washed, may safely be regarded as permanent.
Uranium Intensifier.—A very considerable degree of intensification can be obtained by the use of the uranium intensifier, which is very different in its mode of action, and is