Lightning Rod Conference. VariousЧитать онлайн книгу.
both by their weight and by the great leverage which they exert when there is any wind, they must produce serious vibrations in the roof. In England hitherto the opposite error is almost universal, and we seldom see a conductor carried high enough to protect all the building to which it is attached. The question of appearance comes in here, but concerning it we need only remark that while in England care seems generally taken to conceal the conductors, in France they are, to a certain extent, made features of the edifice. With a proper exercise of taste, the terminals of the lightning conductors can be made to assist the ornamentation of the building, as has been done in many cases.
TESTING CONDUCTORS.—Periodical examination and careful testing of the lightning conductor are requisite to maintain the system in efficient order. Points will corrode from oxidation and fusion; joints will get loose and bad through the action of weather and workmen; connections will decay both above and below ground; imperfections will develope themselves; alterations will be made by landlords and tenants; and, in spite of every precaution during erection, the conductor will thus lose its efficiency if it be not maintained in thorough order. For this purpose inspection should be both visual and electrical. In order to facilitate the electrical examination of the conductor, some firms have erected a double rod, connected with one upper terminal, one on each side of a chimney or shaft; this is a very efficient arrangement, for it provides a means for testing from the ground. It has also been proposed to carry an insulated wire alongside or even within the rod, connected to the terminal at the top, and to the testing apparatus at the bottom.
A testing apparatus has been devised by Mr. Anderson (Lightning Conductors, p. 60). M. Borrell, Appendix K, p. (226), Captain Bucknill, R.E., Appendix M, p. (244), and Mr. Vyle, Appendix M, p. (244), have also introduced apparatus for the purpose. The system in use in Paris, Appendix K, p. (225), and M, p. (245), is perhaps the simplest and cheapest, and is effective as regards testing the efficiency of the conductor, but not that of the earth connection.
The efficiency both of the conductor and of its earth terminal should be annually tested. As this testing involves some skill and familiarity with electrical apparatus it would be advantageous if some competent person were officially appointed, either by the government or by some recognised authority, to perform this duty.
INTERNAL MASSES OF METAL.—All large and long masses of metal, such as beams, girders, pipes, hot water systems, and large ventilators fixed in the interior of buildings, should be electrically connected with the earth, or with the conductor; but the soft metal gas pipes should never be used as conductors. The inlet and outlet pipes of large meters should always be, independently of the meter, electrically connected with each other, for two remarkable cases of the explosion of a meter have occurred through the presence of a joint in the pipe electrically bad owing to the use of India-rubber packing. Appendix M, p. (239).
EXTERNAL MASSES OF METAL.—Large constructive and decorative ironwork, such as guttering, flashings, railings, finials, vanes, &c., and all masses of metals used in building, should be connected to each other, and to the earth direct, or to the conductor. In fact, the gutters and water pipes are already frequently utilized as a partially protective system. The ventilators of soil pipes may also be employed in this way, and even made sightly by the addition of an ornamental finial fitted with points, but care must be taken that the joints are metallic and not made with red lead or putty; and it must not be forgotten that the conductivity of lead is very small, so that undue reliance must not be placed upon pipes made of that metal.
Section III.—Code of Rules for the Erection of Lightning Conductors.
The following Code of Rules should be carefully attended to in drawing out a specification for a Lightning Conductor, the reasons for each being given in the previous Sections and in the Appendix:—
Points.—The point of the upper terminal should not be sharp, not sharper than a cone of which the height is equal to the radius of its base. But a foot lower down a copper ring should be screwed and soldered on to the upper terminal, in which ring should be fixed three or four sharp copper points, each about 6 in. long. It is desirable that these points be so platinized, gilded, or nickel plated as to resist oxidation.
Upper Terminals.—The number of conductors or points to be specified will depend upon the size of the building, the material of which it is constructed, and the comparative height of the several parts. No general rule can be given for this; but the architect must be guided by the directions given at pp. 12 to 14. He must, however, bear in mind that even ordinary chimney stacks, when exposed, should be protected by short terminals connected to the nearest rod, inasmuch as accidents often occur owing to the good conducting power of the heated air and soot in a chimney (p. 2).
Insulators.—The rod is not to be kept from the building by glass or other insulators, but attached to it by metal fastenings. (See p. 11.)
Fixing.—Rods should preferentially be taken down the side of the building which is most exposed to rain. They should be held firmly, but the holdfasts should not be driven in so tightly as to pinch the rod, or prevent the contraction and expansion produced by changes of temperature.
Factory Chimneys.—These should have a copper band round the top, and stout, sharp, copper points, each about 1 ft. long, at intervals of two or three feet throughout the circumference, and the rod should be connected with all bands and metallic masses in or near the chimney. (See p. 5.) Oxidation of the points must be carefully guarded against.
Ornamental Ironwork.—All vanes, finials, ridge ironwork, &c., should be connected with the conductor, and it is not absolutely necessary to use any other point than that afforded by such ornamental ironwork, provided the connection be perfect and the mass of ironwork considerable. As, however, there is risk of derangement through repairs, it is safer to have an independent upper terminal. (See p. 4.)
Material for Rod.—Copper, weighing not less than 6 oz. per foot run, and the conductivity of which is not less than 90 per cent. of that of pure copper, either in the form of tape or rope of stout wires—no individual wire being less than No. 12 B. W. G. Iron may be used, but should not weigh less than 2¼ lbs. per foot run. (See pp. 5 to 10.)
Joints.—Although electricity of high tension will jump across bad joints, they diminish the efficacy of the conductor; therefore every joint, besides being well cleaned, screwed, scarfed, or rivetted, should be thoroughly soldered. (See p. 10.)
Protection.—Copper rods to the height of 10 feet above the ground should be protected from injury and theft, by being enclosed in an iron pipe reaching some distance into the ground.
Painting.—Iron rods, whether galvanized or not, should be painted; copper ones may be painted or not according to architectural requirements.
Curvature.—The rod should not be bent abruptly round sharp corners. In no case should the length of the rod between two points be more than half as long again as the straight line joining them. Where a string course or other projecting stone work will admit of it, the rod may be carried straight through, instead of round the projection. In such a case the hole should be large enough to allow the conductor to pass freely, and allow for expansion, &c.
Extensive