The Chemical History of a Candle (Scientific Lectures). Michael FaradayЧитать онлайн книгу.
the soap is decomposed by sulphuric acid, which takes away the lime, and leaves the fat re-arranged as stearic acid, whilst a quantity of glycerin is produced at the same time. Glycerin—absolutely a sugar, or a substance similar to sugar—comes out of the tallow in this chemical change. The oil is then pressed out of it; and you see here this series of pressed cakes, shewing how beautifully the impurities are carried out by the oily part as the pressure goes on increasing, and at last you have left that substance which is melted, and cast into candles as here represented. The candle I have in my hand is a stearin candle, made of stearin from tallow in the way I have told you. Then here is a sperm candle, which comes from the purified oil of the spermaceti whale. Here also are yellow bees-wax and refined bees-wax, from which candles are made. Here, too, is that curious substance called paraffin, and some paraffin candles made of paraffin obtained from the bogs of Ireland. I have here also a substance brought from Japan, since we have forced an entrance into that out-of-the-way place—a sort of wax which a kind friend has sent me, and which forms a new material for the manufacture of candles.
And how are these candles made? I have told you about dips, and I will shew you how moulds are made. Let us imagine any of these candles to be made of materials which can be cast. "Cast!" you say. "Why, a candle is a thing that melts; and surely if you can melt it, you can cast it." Not so. It is wonderful, in the progress of manufacture, and in the consideration of the means best fitted to produce the required result, how things turn up which one would not expect beforehand. Candles cannot always be cast. A wax candle can never be cast. It is made by a particular process, which I can illustrate in a minute or two: but I must not spend much time on it. Wax is a thing which, burning so well, and melting so easily in a candle, cannot be cast. However, let us take a material that can be cast. Here is a frame, with a number of moulds fastened in it. The first thing to be done is to put a wick through them. Here is one—a plaited wick, which does not require snuffing[3]—supported by a little wire. It goes to the bottom, where it is pegged in—the little peg holding the cotton tight, and stopping the aperture, so that nothing fluid shall run out. At the upper part there is a little bar placed across, which stretches the cotton and holds it in the mould. The tallow is then melted, and the moulds are filled. After a certain time, when the moulds are cool, the excess of tallow is poured off at one corner, and then cleaned off altogether, and the ends of the wick cut away. The candles alone then remain in the mould, and you have only to upset them, as I am doing, when out they tumble, for the candles are made in the form of cones, being narrower at the top than at the bottom; so that what with their form and their own shrinking, they only need a little shaking, and out they fall. In the same way are made these candles of stearin and of paraffin. It is a curious thing to see how wax candles are made. A lot of cottons are hung upon frames, as you see here, and covered with metal tags at the ends to keep the wax from covering the cotton in those places. These are carried to a heater, where the wax is melted. As you see, the frames can turn round; and as they turn, a man takes a vessel of wax and pours it first down one, and then the next and the next, and so on. When he has gone once round, if it is sufficiently cool, he gives the first a second coat, and so on until they are all of the required thickness. When they have been thus clothed, or fed, or made up to that thickness, they are taken off, and placed elsewhere. I have here, by the kindness of Mr. Field, several specimens of these candles. Here is one only half-finished. They are then taken down, and well rolled upon a fine stone slab, and the conical top is moulded by properly shaped tubes, and the bottoms cut off and trimmed. This is done so beautifully that they can make candles in this way weighing exactly four, or six, to the pound, or any number they please.
We must not, however, take up more time about the mere manufacture, but go a little further into the matter. I have not yet referred you to luxuries in candles (for there is such a thing as luxury in candles). See how beautifully these are coloured: you see here mauve, magenta, and all the chemical colours recently introduced, applied to candles. You observe, also, different forms employed. Here is a fluted pillar most beautifully shaped; and I have also here some candles sent me by Mr. Pearsall, which are ornamented with designs upon them, so that as they burn you have as it were a glowing sun above, and a bouquet of flowers beneath. All, however, that is fine and beautiful is not useful. These fluted candles, pretty as they are, are bad candles; they are bad because of their external shape. Nevertheless, I shew you these specimens sent to me from kind friends on all sides, that you may see what is done, and what may be done in this or that direction; although, as I have said, when we come to these refinements, we are obliged to sacrifice a little in utility.
Now, as to the light of the candle. We will light one or two, and set them at work in the performance of their proper functions. You observe a candle is a very different thing from a lamp. With a lamp you take a little oil, fill your vessel, put in a little moss or some cotton prepared by artificial means, and then light the top of the wick. When the flame runs down the cotton to the oil, it gets extinguished, but it goes on burning in the part above. Now, I have no doubt you will ask, how is it that the oil, which will not burn of itself, gets up to the top of the cotton, where it will burn? We shall presently examine that; but there is a much more wonderful thing about the burning of a candle than this. You have here a solid substance with no vessel to contain it; and how is it that this solid substance can get up to the place where the flame is? How is it that this solid gets there, it not being a fluid? or, when it is made a fluid, then how is it that it keeps together? This is a wonderful thing about a candle.
We have here a good deal of wind, which will help us in some of our illustrations, but tease us in others; for the sake, therefore, of a little regularity, and to simplify the matter, I shall make a quiet flame—for who can study a subject when there are difficulties in the way not belonging to it? Here is a clever invention of some costermonger or street stander in the market-place for the shading of their candles on Saturday nights, when they are selling their greens, or potatoes, or fish. I have very often admired it. They put a lamp-glass round the candle, supported on a kind of gallery, which clasps it, and it can be slipped up and down as required. By the use of this lamp-glass, employed in the same way, you have a steady flame, which you can look at, and carefully examine, as I hope you will do, at home.
You see, then, in the first instance, that a beautiful cup is formed. As the air comes to the candle it moves upwards by the force of the current which the heat of the candle produces, and it so cools all the sides of the wax, tallow, or fuel, as to keep the edge much cooler than the part within; the part within melts by the flame that runs down the wick as far as it can go before it is extinguished, but the part on the outside does not melt. If I made a current in one direction, my cup would be lop-sided, and the fluid would consequently run over—for the same force of gravity which holds worlds together holds this fluid in a horizontal position, and if the cup be not horizontal, of course the fluid will run away in guttering. You see, therefore, that the cup is formed by this beautifully regular ascending current of air playing upon all sides, which keeps the exterior of the candle cool. No fuel would serve for a candle which has not the property of giving this cup, except such fuel as the Irish bogwood, where the material itself is like a sponge, and holds its own fuel. You see now why you would have had such a bad result if you were to burn these beautiful candles that I have shewn you, which are irregular, intermittent in their shape, and cannot therefore have that nicely-formed edge to the cup which is the great beauty in a candle. I hope you will now see that the perfection of a process—that is, its utility—is the better point of beauty about it. It is not the best looking thing, but the best acting thing, which is the most advantageous to us. This good-looking candle is a bad burning one. There will be a guttering round about it because of the irregularity of the stream of air and the badness of the cup which is formed thereby. You may see some pretty examples (and I trust you will notice these instances) of the action of the ascending current when you have A little gutter run down the side of a candle, making it thicker there than it is elsewhere. As the candle goes on burning, that keeps its place and forms a little pillar sticking up by the side, because, as it rises higher above the rest of the wax or fuel, the air gets better round it, and it is more cooled and better able to resist the action of the heat at a little distance. Now, the greatest mistakes and faults with regard to candles, as in many other things, often bring with them instruction which we should not receive if they had not occurred. We come here to be philosophers; and I hope you will always remember that whenever a result happens, especially if it be new, you should say, "What is