Эротические рассказы

Computational Methods in Organometallic Catalysis. Yu LanЧитать онлайн книгу.

Computational Methods in Organometallic Catalysis - Yu Lan


Скачать книгу
(1987). Quadratic configuration interaction – a general technique for determining electron correlation energies. Journal of Chemical Physics 87: 5968–5975.

      17 17 Curtiss, L.A., Raghavachari, K., Redfern, P.C.V. et al. (1998). Gaussian‐3 (G3) theory for molecules containing first and second‐row atoms. Journal of Chemical Physics 109: 7764–7776.

      18 18 Nyden, M.R. and Petersson, G.A. (1981). Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions. Journal of Chemical Physics 75: 1843–1862.

      19 19 Petersson, G.A., Bennett, A., Tensfeldt, T.G. et al. (1988). A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row atoms. Journal of Chemical Physics 89: 2193–2218.

      20 20 Petersson, G.A. and Al‐Laham, M.A. (1991). A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. Journal of Chemical Physics 94: 6081–6090.

      21 21 Martin, J.M.L. and Oliveira, G.de. (1999). Towards standard methods for benchmark quality ab initio thermochemistry – W1 and W2 theory. Journal of Chemical Physics 111: 1843–1856.

      22 22 Parthiban, S. and Martin, J.M.L. (2001). Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities. Journal of Chemical Physics 114: 6014–6029.

      23 23 Raghavachari, K. and Pople, J.A. (1981). Calculation of one‐electron properties using limited configuration‐interaction techniques. International Journal of Quantum Chemistry 20: 67–71.

      24 24 Gauss, J. and Cremer, D. (1988). Analytical evaluation of energy gradients in quadratic configuration‐interaction theory. Chemical Physics Letters 150: 280–286.

      25 25 Salter, E.A., Trucks, G.W., Bartlett, R.J. et al. (1989). Analytic energy derivatives in many‐body methods. I. First derivatives. Journal of Chemical Physics 90: 1752–1766.

      26 26 Cížek, J. (1969). Correlation and effects in atoms molecules. Advances in Chemical Physics 14: 35.

      27 27 Scuseria, G.E. and Schaefer, H.F. III (1989). Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration‐interaction (QCISD)? Journal of Chemical Physics 90: 3700–3703.

      28 28 Purvis, G.D. III and Bartlett, R.J. (1982). A full coupled‐cluster singles and doubles model – the inclusion of disconnected triples. Journal of Chemical Physics 76: 1910–1918.

      29  29 Scuseria, G.E., Janssen, C.L., and Schaefer, H.F. III (1988). An efficient reformulation of the closed‐shell coupled cluster single and double excitation (CCSD) equations. Journal of Chemical Physics 89: 7382–7387.

      30 30 Watts, J.D., Gauss, J., and Bartlett, R.J. (1993). Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients. Journal of Chemical Physics 98: 8718.

      31 31 Strutt, J.W. and Rayleigh, L. (1894). Theory of Sound, 2e. London: Macmillan.

      32 32 Pople, J.A., Head‐Gordon, M.D., Fox, J.K. et al. (1989). Gaussian‐1 theory: a general procedure for prediction of molecular energies. Journal of Chemical Physics 90: 5622–5629.

      33 33 Curtiss, L.A., Raghavachari, K.G., Trucks, W. et al. (1991). Gaussian‐2 theory for molecular energies of first‐ and second‐row compounds. Journal of Chemical Physics 94: 7221–7230.

      34 34 Curtiss, L.A., Redfern, P.C., Raghavachari, K. et al. (2007). Gaussian‐4 theory. Journal of Chemical Physics 126: 084108.

      35 35 Ochterski, J.W., Petersson, G.A., Montgomery, J.A. et al. (1996). A complete basis set model chemistry. V. Extensions to six or more heavy atoms. Journal of Chemical Physics 104: 2598–2619.

      36 36 Hohenberg, P. and Kohn, W. (1964). Inhomogeneous electron gas. Physical Review 136: B864–B871.

      37 37 Kohn, W. and Sham, L.J. (1965). Self‐consistent equations including exchange and correlation effects. Physical Review 140: A1133–A1138.

      38 38 Slater, J.C. (1974). The Self‐Consistent Field for Molecular and Solids, Quantum Theory of Molecular and Solids, vol. 4. New York: McGraw‐Hill.

      39 39 Perdew, J.P. and Schmidt, K. (2001). Jacob's ladder of density functional approximations for the exchange‐correlation energy. AIP Conference Proceedings 577: 1–20.

      40 40 Perdew, J.P., Ruzsinszky, A., Constantin, L.A. et al. (2009). Some fundamental issues in ground‐state density functional theory: a guide for the perplexed. Journal of Chemical Theory and Computation 5 (4): 902–908.

      41 41 Becke, A.D. (1988). Density‐functional exchange‐energy approximation with correct asymptotic‐behavior. Physical Review A 38: 3098–3100.

      42 42 Lee, C., Yang, W., Parr, R.G. et al. (1988). Development of the Colle–Salvetti correlation‐energy formula into a functional of the electron density. Physical Review B 37: 785–789.

      43 43 Perdew, J.P., Burke, K., Ernzerhof, M. et al. (1996). Generalized gradient approximation made simple. Physical Review Letters 77: 3865–3868.

      44 44 Perdew, J.P. (1986). Density‐functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B 33: 8822–8824.

      45 45 Zhao, Y. and Truhlar, D.G. (2006). A new local density functional for main‐group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. Journal of Chemical Physics 125: 194101–194118.

      46  46 Tao, J.M., Perdew, J.P., Staroverov, V.N. et al. (2003). Climbing the density functional ladder: nonempirical meta‐generalized gradient approximation designed for molecules and solids. Physical Review Letters 91: 146401.

      47 47 Van Voorhis, T. and Scuseria, G.E. (1998). A never form for the exchange‐correlation energy functional. Journal of Chemical Physics 109: 400–410.

      48 48 Becke, A.D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics 98: 5648–5652.

      49 49 Becke, A.D. (1997). Density‐functional thermochemistry. V. Systematic optimization of exchange‐correlation functionals. Journal of Chemical Physics 107: 8554–8560.

      50 50 Cohen, A.J. and Handy, N.C. (2001). Dynamic correlation. Molecular Physics 99: 607–615.

      51 51 Adamo, C. and Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: the PBE0 model. Journal of Chemical Physics 110: 6158–6169.

      52 52 Adamo, C. and Barone, V. (1998). Exchange functionals with improved long‐range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. Journal of Chemical Physics 108: 664–675.

      53 53 Xu, X. and Goddard, W.A. (2004). The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proceedings of the National Academy of Sciences of the United States of America 101: 2673–2677.

      54 54 Zhao, Y., Schultz, N.E., Truhlar, D.G. et al. (2005). Exchange‐correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. Journal of Chemical Physics 123: 161103.

      55 55 Zhao, Y. and Truhlar, D.G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06‐class functionals and 12 other functionals. Theoretical Chemistry Accounts 120: 215–241.

      56 56 Zhao, Y. and Truhlar, D.G. (2006). Comparative DFT study of van der Waals complexes: rare‐gas dimers, alkaline‐earth dimers, zinc dimer, and zinc‐rare‐gas dimers. Journal of Physical Chemistry 110: 5121–5129.

      57 57 Zhao, Y. and Truhlar, D.G. (2006). Density functional for spectroscopy: no long‐range self‐interaction error, good performance for Rydberg and charge‐transfer states, and better performance on average than B3LYP


Скачать книгу
Яндекс.Метрика