Digital Transformation of the Laboratory. Группа авторовЧитать онлайн книгу.
Maldini, C.R., Ellis, G., and Riley, J.L. (2018). CAR‐T cells for infection, autoimmunity and allotransplantation. Nature Reviews. Immunology 18: 605–616. https://doi.org/10.1038/s41577-018-0042-2.
92 92 Stem cells: what they are and what they do. https://www.mayoclinic.org/tests-procedures/bone-marrow-transplant/in-depth/stem-cells/art-20048117 (accessed 1 February 2020).
93 93 Bui, F., Almeida‐da‐Silva, C.L.C., Huynh, B. et al. (2019). Association between periodontal pathogens and systemic disease. Biomedical Journal 42 (1): 27–35. https://doi.org/10.1016/j.bj.2018.12.001.
94 94 Kakasis, A. and Panitsa, G. (2019). Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. International Journal of Antimicrobial Agents 53 (1): 16–21. https://doi.org/10.1016/j.ijantimicag.2018.09.004.
95 95 Lu, R., Hwang, Y.‐C., Liu, I.‐J. et al. (2020). Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science 27: 1. https://doi.org/10.1186/s12929-019-0592-z.
96 96 Bajan, S. and Hutvagner, G. (2020). RNA‐based therapeutics: from antisense oligonucleotides to miRNAs. Cells 9: 137. https://doi.org/10.3390/cells9010137.
97 97 Fosgerau, K. and Hoffmann, T. (2015). Peptide therapeutics: current status and future directions. Drug Discovery Today 20 (1): 122–128; https://doi.org/10.1016/j.drudis.2014.10.003.
98 98 Burslem, G.M. and Crews, C.M. (2020). Proteolysis‐targeting chimeras as therapeutics and tools for biological discovery. Cell 181: 1. https://doi.org/10.1016/j.cell.2019.11.031.
99 99 Ursell, L.K., Metcalf, J.L., Parfrey, L.W., and Knight, R. (2012). Defining the human microbiome. Nutrition Reviews 70 (Suppl 1): S38–S44. https://doi.org/10.1111/j.1753-4887.2012.00493.x.
100 100 Eloe‐Fadrosh, E.A. and Rasko, D.A. (2013). The human microbiome: from symbiosis to pathogenesis. Annual Review of Medicine 64: 145–163. https://doi.org/10.1146/annurev-med-010312-133513.
101 101 Russell, W.M.S. and Burch, R.L. (1959). The Principles of Humane Experimental Technique. London. ISBN 0900767782 [1]: Methuen.
102 102 (i) NC3Rs https://www.nc3rs.org.uk/. (ii) European Union: Directive 2010/63/EU. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32010L0063 (accessed 1 February 2020).
103 103 Wenner Moyer, M. (2011). Organs‐on‐a‐chip for faster drug development. Scientific American. https://www.scientificamerican.com/article/organs-on-a-chip/ (accessed 1 February 2020).
104 104 Voigtländer, B. (2015). Scanning Probe Microscopy. NanoScience and Technology. London, UK: Springer‐Verlag. https://doi.org/10.1007/978-3-662-45240-0.
105 105 Milne, J.L., Borgnia, M.J., Bartesaghi, A. et al. (2012). Cryo‐electron microscopy–a primer for the non‐microscopist. The FEBS Journal 280 (1): 28–45. https://doi.org/10.1111/febs.12078.
106 106 Gao, L., Zhao, H., Li, T. et al. (2018). Atomic force microscopy based tip‐enhanced Raman spectroscopy in biology. International Journal of Molecular Sciences 19: 1193. https://doi.org/10.3390/ijms19041193.
107 107 Debata, S., Das, T.R., Madhuri, R., and Sharma, P.K. (2018). Materials characterization using scanning tunneling microscopy: from fundamentals to advanced applications. In: Handbook of Materials Characterization (ed. S. Sharma), 217–261. Cham: Springer https://doi.org/10.1007/978-3-319-92955-2_6.
108 108 Michel, B. (1991). Highlights in condensed matter physics and future prospects. In: STM in Biology. NATO ASI Series (Series B: Physics), vol. 285 (ed. L. Esaki), 549–572. Boston, MA: Springer https://doi.org/10.1007/978-1-4899-3686-8_26.
109 109 Broadwith, P. (2017). Explainer: what is cryo‐electron microscopy? Chemistry World. https://www.chemistryworld.com/news/explainer-what-is-cryo-electron-microscopy/3008091.article (accessed 1 February 2020).
110 110 Aminu, M.D., Nabavi, S.A., Rochelle, C.A., and Manovic, V. (2017). A review of developments in carbon dioxide storage. Applied Energy 208: 1389–1419. https://doi.org/10.1016/j.apenergy.2017.09.015.
111 111 Heiska, J., Nisula, M., and Karppinen, M. (2019). Organic electrode materials with solid‐state battery technology. Journal of Materials Chemistry A 7: 18735–18758. https://doi.org/10.1039/C9TA04328D.
112 112 (i) Osuchowski, Marcin, F., Aletti, Federico, Cavaillon, Jean‐Marc, Flohé, Stefanie B., Giamarellos‐Bourboulis, Evangelos J., Huber‐Lang, Markus, Relja, Borna, Skirecki, Tomasz, Szabó, Andrea, and Maegele, Marc (2020). SARS‐CoV‐2/COVID‐19: evolving reality, global response, knowledge gaps, and opportunities. SHOCK 54 (4): 416–437. https://doi:10.1097/SHK.0000000000001565. (ii) https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/ (accessed 16 November 2020). (iii) Lisheng, Wang, Yiru, Wang, Dawei, Ye, and Qingquan, Liu (2020). Review of the 2019 novel coronavirus (SARS‐CoV‐2) based on current evidence. International Journal of Antimicrobial Agents 55 (6): 105948. https://doi.org/10.1016/j.ijantimicag.2020.105948 (accessed 16 November 2020).
113 113 (i) UK Health Secretary launches biggest diagnostic lab network in British history to test for coronavirus (2020). https://www.gov.uk/government/news/health-secretary-launches-biggest-diagnostic-lab-network-in-british-history-to-test-for-coronavirus (accessed 16 November 2020). (ii) Germany's ‘bottom‐up’ testing keeps coronavirus at bay. https://www.ft.com/content/0a7bc361-6fcc-406d-89a0-96c684912e46 (accessed 16 November 2020).
114 114 Archana Koirala, Ye Jin Joo, Ameneh Khatami, Clayton Chiu, and Philip N. Britton (2020). Vaccines for COVID-19: the current state of play. Paediatric Respiratory Reviews 35: 43–49. https://doi.org/10.1016/j.prrv.2020.06.010 (accessed 16 November 2020).
115 115 Christiaens, Stan (2020). The importance of data accuracy in the fight against Covid-19. https://www.computerweekly.com/opinion/The-importance-of-data-accuracy-in-the-fight-against-Covid-19 (accessed 16