Self-Healing Smart Materials. Группа авторовЧитать онлайн книгу.
Y., Vennemann, N., Pichaiyut, S., Wisunthorn, S., Nakason, C., Influence of critical carbon nanotube loading on mechanical and electrical properties of epoxidized natural rubber nanocomposites. Polym. Test., 66, 122, 2018.
48. Cao, L., Yuan, D., Xu, C., Chen, Y., Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals. Nanoscale, 9, 15696, 2017.
49. Xu, C., Nie, J., Wu, W., Zheng, Z., Chen, Y., Self-healable, recyclable and strengthened epoxidized natural rubber/carboxymethyl chitosan bio-based composites with hydrogen bonding supramolecular hybrid network. ACS Sustainable Chem. Eng., 7, 15778, 2019.
50. Hernández Santana, M., Huete, M., Lameda, P., Araujo, J., Verdejo, R., López-Manchado, M.A., Design of a new generation of sustainable SBR compounds with good trade-off between mechanical properties and self-healing ability. Eur. Polym. J., 106, 273, 2018.
51. Marzocca, A.J. and Mansilla, M.A., Analysis of network structure formed in styrene-butadiene rubber cured with sulfur/TBBS system. J. Appl. Polym. Sci., 103, 1105, 2007.
52. Araujo-Morera, J., Hernández Santana, M., Verdejo, R., López-Manchado, M.A., Giving a Second Opportunity to Tire Waste: An Alternative Path for the Development of Sustainable Self-Healing Styrene–Butadiene Rubber Compounds Overcoming the Magic Triangle of Tires. Polymers, 11, 2122, 2019.
53. Balasooriya, W., Schrittesser, B., Pinter, G., Schwarz, T., Conzatti, L., The Effect of the Surface Area of Carbon Black Grades on HNBR in Harsh Environments. Polymers, 11, 61, 2019.
54. Xiang, H., Yin, J., Lin, G., Liu, X., Rong, M., Zhang, M., Photo-crosslinkable, self-healable and reprocessable rubbers. Chem. Eng. J., 358, 878, 2019.
55. Das, A., Sallat, A., Böhme, F., Suckow, M., Basu, D., Wießner, S., Stöckelhuber, K.W., Voit, B., Heinrich, G., Ionic Modification Turns Commercial Rubber into a Self-Healing Material. ACS Appl. Mater. Interfaces, 7, 20623, 2015.
56. Lee, M.W., Jo, H.S., Yoon, S.S., Yarin, A.L., Thermally driven self-healing using copper nanofiber heater. Appl. Phys. Lett., 111, 011902, 2017.
57. Kim, H., Yarin, A.L., Lee, M.W., Self-healing corrosion protection film for marine environment. Compos. Part B—Eng., 182, 1075987, 2020.
58. Zhao, L., Shi, X., Yin, Y., Jiang, B., Huang, Y., A self-healing silicone/BN composite with efficient healing property and improved thermal conductivities. Compos. Sci. Technol., 186, 107919, 2020.
59. Ping, H., Zhi, M., Qiu, M., A facile method for imparting sunlight driven catalyst-free self- healability and recyclability to commercial silicone elastomer. Polymer, 108, 339–347, 2017.
60. Zhao, X. and Zhang, J., A novel composite silicone foam with enhanced safeguarding performance and self-healing property. React. Funct. Polym., 138, 114–121, 2019.
61. Chen, G., Sun, Z., Wang, Y., Zheng, J., Wen, S., Zhang, J., Wang, L., Hou, J., Lin, C., Yue, Z., Designed preparation of silicone protective materials with controlled self-healing and toughness properties. Prog. Org. Coat., 140, 105483, 2020.
62. Sun, H., Liu, X., Liu, S., Yu, B., Ning, N., Tian, M., Zhang, L., Silicone dielectric elastomer with improved actuated strain at low electric field and high self-healing efficiency by constructing supramolecular network. Chem. Eng. J., 384, 123242, 2020.
63. Abdolah Zadeh, M.A., Esteves, A.C.C., Van der Zwaag, S., Garcia, S.J., Healable dual organicinorganic crosslinked. Sol–Gel based polymers: Crosslinking density and tetrasulfide content effect. J. Polym. Sci. A, 52, 1953, 2014.
64. Canadell, J., Goossens, H., Klumperman, B., Self-healing materials based on disulfide links. Macromol., 44, 2536, 2011.
65. Michal, B.T., Spencer, E.J., Rowan, S.J., Stimuli-responsive reversible two-level adhesion from a structurally dynamic shape-memory polymer. ACS Appl. Mater. Interfaces, 8, 11041, 2016.
66. Wei, M. et al., Novel Poly(tetramethylene ether)glycol and Poly (ε -caprolactone) Based Dynamic Network via Quadruple Hydrogen Bonding with Triple-Shape Effect and Self-Healing Capacity. Appl. Mater. Interfaces, 7 (4), 2585–2596, 2015.
67. Jiang, Z., Xiao, Y.Y., Kang, Y., Pan, M., Li, B.J., Zhang, S., Shape Memory Polymers Based on Supramolecular Interactions. Appl. Mater. Interfaces, 9, 20276, 2017.
68. Abdolah Zadeh, M.A., Esteves, A.C.C., Van der Zwaag, S., Garcia, S.J., Healable dual organicinorganic crosslinked. Sol–Gel based polymers: Crosslinking density and tetrasulfide content effect. J. Polym. Sci. A, 52, 1953, 2014.
69. Canadell, J., Goossens, H., Klumperman, B., Self-healing materials based on disulfide links. Macromol., 44, 2536, 2011.
70. Michal, B.T., Spencer, E.J., Rowan, S.J., Stimuli-responsive reversible twolevel adhesion from a structurally dynamic shape-memory polymer. ACS Appl. Mater. Interfaces, 8, 11041, 2016.
71. Wei, M. et al., Novel Poly(tetramethylene ether)glycol and Poly (ε -caprolactone) Based Dynamic Network via Quadruple Hydrogen Bonding with Triple-Shape Effect and Self-Healing Capacity. Appl. Mater. Interfaces, 7 (4), 2585–2596, 2015.
72. Jiang, Z., Xiao, Y.Y., Kang, Y., Pan, M., Li, B.J., Zhang, S., Shape Memory Polymers Based on Supramolecular Interactions. Appl. Mater. Interfaces, 9, 20276, 2017.
73. Rekondo, A. and Martin, R., Catalyst-free room-temperature self-healing elastomers based onaromatic disulfide metathesis. Mater. Horiz., 1, 237, 2014.
74. Nevejans, S., Ballard, N., Fernández, M., Reck, B., Asua, J., Flexible aromatic disulfide monomers for high-performance self-healable linear and cross-linked poly(urethane-urea) coatings. Polym., 166, 229, 2019.
75. Zhang, Z.P., Rong, M.Z., Zhang, M.Q., Yuan, C.E., Alkoxyamine with reduced homolysis temperature and its application in repeated autonomous self-healing of stiffpolymers. Polym. Chem., 4, 4648, 2013.
76. Hu, J., Mo, R., Jiang, X., Sheng, X., Zhang, X., Towards mechanical robust yet self-healing polyurethane elastomers via combination of dynamic main chain and dangling quadruple hydrogen bonds. Polym., 183, 121912, 2019.
*Corresponding author: [email protected]
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.