Теория игр. Искусство стратегического мышления в бизнесе и жизни. Барри Дж. НейлбаффЧитать онлайн книгу.
характер (как в показанном выше примере), логика обратных рассуждений очевидна.
Нам хотелось бы на примере этой игры подчеркнуть три важных момента. Во-первых, разные игры можно выразить в виде идентичных или очень похожих математических форм (деревьев или таблиц, подобных тем, что приведены в следующих главах). Использование формального математического представления позволяет провести параллели и перенести знания об игре из одной ситуации в другую. Это важная функция теории в любой предметной области: она дает возможность выделить существенные общие элементы на первый взгляд разных ситуаций, а также придерживаться унифицированного, а значит, более простого подхода к их анализу. Многим свойственно подсознательное неприятие теории как таковой. Но мы считаем, что это неправильно. Безусловно, у любой теории есть свои ограничения. Конкретные условия или события способны существенно дополнить или изменить рецепты, которые предоставляет теория. Однако если полностью отказаться от теории, можно лишиться ценной отправной точки для размышлений, а это серьезно затруднит решение проблемы. Нужно постараться сделать теорию игр своим помощником, а не препятствием в деле стратегического мышления.
Второй момент. Фредо должен понимать, что стратегически мыслящий Чарли отнесется к его предложению с недоверием и не станет вкладывать деньги, тем самым лишая его возможности заработать 250 000 долларов. Следовательно, у Фредо есть весомый стимул сделать свое обещание заслуживающим доверия. Будучи индивидуальным предпринимателем, Фредо почти не имеет влияния на слабую правовую систему страны, а значит, не может развеять подобные сомнения инвестора. Какие еще методы имеются в его распоряжении? Мы проанализируем вопрос достоверности стратегий и способы ее достижения в главах 6 и 7.
Третий и, вероятно, самый важный момент касается результатов, к которым придут участники игры в зависимости от того, какой вариант возможного развития событий выберут. Далеко не всегда складывается так, что, если один игрок получает больше, другой – непременно меньше. Ситуация, когда Чарли решает вложить деньги, а Фредо – выполнить контракт, более выгодна им обоим, чем ситуация, в которой Чарли не делает инвестиции. В отличие от соревнований или конкурсов, в таких играх нет победителей и проигравших; если говорить на языке теории игр, эти игры не должны быть играми с нулевой суммой. Они могут завершиться выигрышем или проигрышем обеих сторон. На самом деле в большинстве игр в бизнесе, политике и социальном взаимодействии присутствует как общность интересов (например, когда Чарли и Фредо могут оба получить прибыль, если Фредо найдет способ убедить партнера в том, что он выполнит контракт), так и конфликт интересов (в частности, если Фредо решит нажиться за счет Чарли и скрыться со всеми деньгами после того, как тот сделает инвестиции). Именно сочетание общности и конфликта интересов делает анализ таких игр столь интересным и актуальным.
Более