Biomedical Data Mining for Information Retrieval. Группа авторовЧитать онлайн книгу.
Hospital Mortality Prediction of Intensive Care Unit Patients Using an Ensemble Learning Approach, CDATA. Int. J. Med. Inf., vol. 108, pp. 185–195, 2017.
5. Kim, S., Kim, W., Woong Park, R., A Comparison of Intensive Care Unit Mortality Prediction Models through the Use of Data Mining Techniques. The Korean Society of Medical Informatics. Healthc. Inform. Res., 17, 4, 232– 243, December, 2011.
6. https://physionet.org/content/challenge-2012/1.0.0.
7. Silva, I., Moody, G., Scott, D.J., Celi, L.A., Mark, R.G., Predicting In-Hospital Mortality of ICU patients: The PhysioNet/Computing in Cardiology Challenge 2012. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 245–248, 2012.
8. Hosmer, D.W. and Lemeshow, S., Applied Logistic Regression, Wiley series in probability and statistics, 2nd Edition, John Wiley & Sons, Inc. 2000.
9. Johnson, D., Nic, M., Louis, T., Athanasios, K., Adrew, A., Clifford, G.D., Patient specific predictions in the intensive care unit using a Bayesian Ensemble. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 249–252, 2012.
10. Lee, C.H., Arzeno, N.M., Ho, J.C., Vikalo, H., Ghosh, J., An Imputation-Enhanced Algorithm for ICU Mortality Prediction. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 253–256, 2012.
11. Citi, L. and Barbieri, R., PhysioNet 2012 Challenge: Predicting Mortality of ICU Patients using a Cascaded SVM-GLM Paradigm. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 257–260, 2012.
12. Xia, H., Daley, B.J., Petrie, A., Zhao, X., A Neural Network Model for Mortality Prediction in ICU. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 261–264, 2012.
13. McMillan, S., Chia, C.-C., Van Esbroeck, A., Runinfield, I., Syed, Z., ICU Mortality Prediction using Time Series Motifs. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 265–268, 2012.
14. Vairavan, S., Eshelman, L., Haider, S., Flower, A., Seiver, A., Prediction of Mortality in an Intensive Care Unit using Logistic Regression and a Hidden Markov Model. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 393–396, 2012.
15. Yi, C., Sun, Y., Tian, Y., CinC Challenge: Predicting In-Hospital Mortality in the Intensive Care Unit by Analyzing Histograms of Medical Variables under Cascaded Adaboost Model. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 397–400, 2012.
16. Kranjnak, M., Xue, J., Kaiser, W., Balloni, W., Combining Machine Learning and Clinical Rules to Build an Algorithm for Predicting ICU Mortality Risk. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 401–404, 2012.
17. Severeyn, E., Altuve, M., Ng, F., Lollett, C., Wong, S., Towards the Prediction of Mortality in Intensive Care Units Patients: A simple Correspondence Analysis Approach. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 469–472, 2012.
18. Macas, M., Kuzilek, J., Odstrcilik, T., Huptych, M., Linear Bayes Classification for Mortality Prediction. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 473–476, 2012.
19. Di Marco, L.Y., Bojarnejad, M., King, S.T., Duan, W., Di Maria, C., Zheng, D., Murray, A., Langley, P., Robust Prediction of Patient Mortality from 48 Hour Intensive Care Unit Data. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 477–480, 2012.
20. Bosnjak, A. and Montilla, G., Predicting Mortality of ICU Patients using Statistics of Physiological Variables and Support Vector Machines. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 481–484, 2012.
21. Pollard, T.J., Harra, L., Williams, D., Harris, S., Martinez, D., Fong, K., PhysioNet Challenge: An Artificial Neural Network to Predict Mortality in ICU Patients and Application of Solar Physics Analysis Methods. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 485–488, 20122012.
22. Hamilton, S.L. and Hamilton, J.R., Predicting In-Hospital-Death and Mortality Percentage using Logistic Regression. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 489–492, 2012.
23. Bera, D. and Manjnath Nayak, M., Mortality Risk for ICU patients using Logistic Regression. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 493–496, 2012.
24. Xu, J., Li, D., Zhang, Y., Djulovic, A., Li, Y., Zeng, Y., CinC Challenge: Cluster Analysis of Multi-Granular Time-series Data for Mortality Rate Prediction. Computing in Cardiology Conference (CinC), vol. 39, IEEE, pp. 497–500, 2012.
25. Monterio, F., Meloni, F., Baranauskas, J.A., Alaniz Macedo, A., Prediction of mortality in Intensive Care Units: A multivariate feature selection. J. Biomed. Inf., Elsevier, 107, 103456, pp. 1–11, 2020.
26. Johnson, A.E.W., Real-time mortality prediction in Intensive Care Unit. AMIA Annual Symposium Proceedings Archive, pp. 994–1003, 2018.
27. Awad, A., Bader-EI-Den, M., McNicholas, J., Briggs, J., EI-Sonbaty, Y., Predicting hospital mortality for intensive care unit patients: Time series analysis. Health Inf. J., vol. 26(2), pp. 1043–1059, 2019.
28. Garcia-Gallo, J.E., Fonseca-Ruiz, N.J., Celi, L.A., Duitama-Munoz, J.F., A machine learning-based model for 1-year mortality prediction in patients admitted to an Intensive Care Unit with a diagnosis of sepsis. Med. Intensiva, Elsevier, 44, 3, 160–170, 2018.
29. Caicedo-Torres, W. and Gutierrez, J., ISeeU: Visually Interpretable deep learning for mortality prediction inside the ICU. J. Biomed. Inform., Elsevier, 98, 103269, pp. 1–16, 2019.
30. Ma, X., Si, Y., Wang, Z., Wang, Y., Length of stay prediction for ICU patients using individualized single classification algorithm. Comput. Methods Programs Biomed., 186, 105224, p. 1–11, 2020.
31. Schönrock-Adema, J., Heijne-Penninga, M., van Hell, E.A., Cohen-Schotanus, J., Necessary steps in factor analysis: Enhancing validation studies of educational instruments. The PHEEM applied to clerks as an example. Med. Teach., 31, 6, e226–e232, 2009.
32. Majhi, R., Panda, G., Sahoo, G., Development and performance evaluation of FLANN based model for forecasting of stock markets. Expert Syst. Appl., Elsevier, 36, 3, 6800–6808, 2009.
33. Widrow, B., Adaptive signal processing, Prentice Hall, New Jersey, 1985.
35. Han, J., Kamber, M., Pei, J., Data mining concepts and techniques, Third Edition, Elsevier, India, 2012.
1 *Corresponding author: [email protected]
2
Artificial Intelligence in Bioinformatics
V. Samuel Raj, Anjali Priyadarshini*, Manoj Kumar Yadav, Ramendra Pati Pandey, Archana Gupta and Arpana Vibhuti
SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, India
Abstract
Artificial intelligence tries to replace human intelligence with machine intelligence to solve diverse biological problems. Recent developments in Artificial Intelligence (AI) are set to play a very essential role in the bioinformatics domain. Machine learning and deep learning, the emerging fields with respect to biological science have created a lot of excitement as research communities want to harness their robustness in the field of biomedical and health-informatics. In this book chapter,