Эротические рассказы

Biomedical Data Mining for Information Retrieval. Группа авторовЧитать онлайн книгу.

Biomedical Data Mining for Information Retrieval - Группа авторов


Скачать книгу
422–427, 1960.

      54. Perutz, M.F., Rossmann, M.G., Cullis, A.F., Muirhead, G., Will, G., North, A.T., Structure of haemoglobin: A three-dimensional Fourier synthesis at 5.5 Angstrom resolution, obtained by X-ray analysis. Nature, 185, 416–422, 1960.

      55. Travers, A., DNA conformation and protein binding. Annu. Rev. Biochem., 58, 427–452, 1989.

      56. Bjorkman, P.J. and Parham, P., Structure, function and diversity of class I major histocompatibility complex molecules. Annu. Rev. Biochem., 59, 253– 288, 1990.

      57. Bernstein, F.C., Koetzle, T.F., Williams, G.J., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., Tasumi, M., The protein data bank. Eur. J. Biochem., 80, 319–324, 1977. [CrossRef] [PubMed].

      58. Consortium, U., The universal protein resource (UniProt). Nucleic Acids Res., 36, D190–D195, 2008. [CrossRef] [PubMed].

      59. Kabsch, W. and Sander, C., Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637, 1983. [CrossRef] [PubMed].

      60. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C., Scop: A structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol., 247, 536–540, 1995. [CrossRef].

      61. Andreeva, A., Howorth, D., Chothia, C., Kulesha, E., Murzin, A.G., SCOP2 prototype: A new approach to protein structure mining. Nucleic Acids Res., 42, 310–314, 2014. [CrossRef] [PubMed].

      62. Sillitoe, I., Lewis, T.E., Cuff, A., Das, S., Ashford, P., Dawson, N.L., Furnham, N., Laskowski, R.A., Lee, D., Lees, J.G., Cath: Comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res., 43, 376– 381, 2015.

      64. Eddy, S.R., Profile hidden Markov models. Bioinfo., 14, 755–763, 1998.

      65. Soeding, J., Protein homology detection by HMM–HMM comparison. Bioinfo., 21, 951–960, 2005.

      66. Rost, B. and Sander, C., Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol., 232, 2, 584–599, 1993, https://doi.org/10.1006/jmbi.1993.1413.

      67. Rost, B., PHD: Predicting one-dimensional protein structure by profile based neural networks. Methods Enzymol., 266, 525–539, 1996, https://doi.org/10.1016/s0076-6879(96)66033-9.

      68. Jones, D.T., Protein secondary structure prediction based on positionspecific scoring matrices. J. Mol. Biol., 292, 2, 195–202, 1999.

      69. Cuff, J.A., Clamp, M.E., Siddiqui, A.S., Finlaym, M., Barton, G.J., JPred: A consensus secondary structure prediction server. Bioinformatics, 14, 10, 892– 893, 1998.

      70. LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature, 521, 7553, 436–444, 2015.

      71. Zhu, J., Wang, S., Bu, D., Xu, J., Protein threading using residue covariation and deep learning. Bioinformatics, 34, 13, i263–i273, 2018.

      72. Xu, J. and Wang, S., Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins, 87, 12, 1069–1081, 2019, https://doi.org/10.1002/prot.25810.

      73. Xu, J., Distance-based protein folding powered by deep learning. Proc. Natl. Acad. Sci. U.S.A., 116, 34, 16856–16865, 2019.

      74. Greener, J.G., Kandathil, S.M., Jones, D.T., Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints. Nat. Commun., 10, 3977, 2019.

      75. Senior, A.W., Evans, R., Jumper, J. et al., Protein structure prediction using multiple deep neural networks in CASP13. Proteins, 87, 12, 1041–1048, 2019, https://doi.org/10.1002/prot.25834. [2] Cao, R., Freitas, C., Chan, L., Sun, M., Jiang, H., Chen, Z., ProLanGO: Protein Function Prediction Using Neural Machine Translation Based on a Recurrent Neural Network. Molecules, 22, 10, 1732, 2017.

      76. Qiu, J., Sheffler, W., Baker, D., Noble, W.S., Ranking predicted protein structures with support vector regression. Proteins, 71, 1175–1182, 2007.

      77. Joo, H. and Tsai, J., An amino acid code for β-sheet packing structure. Proteins: Structure, Function, and Bioinformatics, Volume 82 (9) – Sep. 1, 2014.

      78. Crick, F.H., The packing of α-helices: simple coiled-coils. Acta Crystallogr., 6, 689–697, 1953.

      79. von Mering, C., Krause, R., Sne, B. et al., Comparative assessment of large scale data sets of protein–protein interactions. Nature, 417, 6887, 399–403, 2002.

      81. Harwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W., From molecular to modular cell biology. Nature, 402, c47–c52, 999.

      82. Jeong, H., Mason, S., Barabási, A.L. et al., Lethality and centrality in protein networks. Nature, 411, 6833, 41–42, 2001.

      83. Giot, L. et al., A protein interaction map of Drosophila melanogaster. Science, 302, 1727–1736, 2003.

      84. Li, S., Armstrong, C., Bertin, N., A map of the interactome network of the metazoan. Science, 303, 5657, 540–543, 2004.

      85. Wuchty, S., Scale-free behavior in protein domain networks. Mol. Biol. Evol., 18, 9, 1694–1702, 2001.

      86. del Sol, A. and O’Meara, P., Small-world network approach to identify key residues in protein–protein interaction. Proteins, 58, 3, 672–682, 2004.

      87. del Sol, A., Fujihashi, H., O’Meara, P., Topology of small-world networks of protein–protein complex structures. Bioinformatics, 21, 8, 1311–131, 2005.

      88. Brohée, S. and van Helden, J., Evaluation of clustering algorithms for protein–protein interaction networks. BMC Bioinf., 7, 48, 2006.

      89. Spirin, V. and Mirny, L.A., Protein complexes and functional modules in molecular networks. PNAS, 100, 12123–12128, 2003.

      90. Bu, D., Zhao, Y., Cai, L. et al., Topological structure analysis of the protein– protein interaction network in budding yeast. Nucleic Acids Res., 31, 9, 2443– 2450, 2003.

      91. Nicolas, J., Artificial intelligence and bioinformatics. 2018, https://doi.org/10.1007/978-3-030-06170-8_7.

      92. Dimova, D. and Bajorath, J., Advances in activity cliff research. Mol. Inf., 35, 5, 181–191, 2016.

      93. Stumpfe, D., Hu, H., Bajorath, J., Evolving Concept of Activity Cliffs. ACS Omega, 4, 11, 14360–14368, 2019, Published 2019 Aug 26.

      94. Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J., Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discovery, 3, 11, 935, 2004.

      95. Ferreira, L.G., dos Santos, R.N., Oliva, G., Andricopulo, A.D., Molecular docking and structure-based drug design strategies. Molecules, 20, 7, 13384– 13421, 2015.

      96. Dos Santos, R.N., Ferreira, L.G., Andricopulo, A.D., Practices in Molecular Docking and Structure-Based Virtual Screening. Methods Mol. Biol. (Clifton, N.J.), 1762, 31–50, 2018, https://doi.org/10.1007/978-1-4939-7756-7_3.


Скачать книгу
Яндекс.Метрика