Biomolecular Engineering Solutions for Renewable Specialty Chemicals. Группа авторовЧитать онлайн книгу.
microbial factories for synthesis of value‐added products. Journal of Industrial Microbiology & Biotechnology, 38(8), 873–890.
43 Dutta, K., Daverey, A., & Lin, J. G. (2014). Evolution retrospective for alternative fuels: first to fourth generation. Renewable Energy, 69, 114–122.
44 Facchini, P. J., Bohlmann, J., Covello, P. S., De Luca, V., Mahadevan, R., Page, J. E., … & Martin, V. J. (2012). Synthetic biosystems for the production of high‐value plant metabolites. Trends in Biotechnology, 30(3), 127–131.
45 Feng, J., Gu, Y., Quan, Y., Cao, M., Gao, W., Zhang, W., … & Song, C. (2015). Improved poly‐γ‐glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. Metabolic Engineering, 32, 106–115.
46 Fukui, T., Mukoyama, M., Orita, I., & Nakamura, S. (2014). Enhancement of glycerol utilization ability of Ralstonia eutropha H16 for production of polyhydroxyalkanoates. Applied Microbiology and Biotechnology, 98(17), 7559–7568.
47 Gao, C., Yang, X., Wang, H., Rivero, C. P., Li, C., Cui, Z., … & Lin, C. S. K. (2016a). Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. Biotechnology for Biofuels, 9(1), 1–11.
48 Gao, X., Gao, F., Liu, D., Zhang, H., Nie, X., & Yang, C. (2016b). Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO2. Energy & Environmental Science, 9(4), 1400–1411.
49 Gao, Z., Zhao, H., Li, Z., Tan, X., & Lu, X. (2012). Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy & Environmental Science, 5(12), 9857–9865.
50 Gaurav, N., Sivasankari, S., Kiran, G. S., Ninawe, A., & Selvin, J. (2017). Utilization of bioresources for sustainable biofuels: a review. Renewable and Sustainable Energy Reviews, 73, 205–214.
51 Ghirardi, M. L., Zhang, L., Lee, J. W., Flynn, T., Seibert, M., Greenbaum, E., & Melis, A. (2000). Microalgae: a green source of renewable H2. Trends in Biotechnology, 18(12), 506–511.
52 Goeddel, D. V., Kleid, D. G., Bolivar, F., Heyneker, H. L., Yansura, D. G., Crea, R., … & Riggs, A. D. (1979). Expression in Escherichia coli of chemically synthesized genes for human insulin. Proceedings of the National Academy of Sciences, 76(1), 106–110.
53 Grage, K., Jahns, A. C., Parlane, N., Palanisamy, R., Rasiah, I. A., Atwood, J. A., & Rehm, B. H. (2009). Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano‐/micro‐beads in biotechnological and biomedical applications. Biomacromolecules, 10(4), 660–669.
54 Greider, C. W., & Blackburn, E. H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 43(2), 405–413.
55 Guerrier‐Takada, C., Gardiner, K., Marsh, T., Pace, N., & Altman, S. (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 35(3), 849–857.
56 Halfmann, C., Gu, L., Gibbons, W., & Zhou, R. (2014). Genetically engineering cyanobacteria to convert CO 2, water, and light into the long‐chain hydrocarbon farnesene. Applied Microbiology and Biotechnology, 98(23), 9869–9877.
57 Hershey, A. D., & Chase, M. (1952). Independent functions of viral protein and nucleic acid in growth of bacteriophage. Journal of General Physiology, 36(1), 39–56.
58 Hmar, R. V., Prasad, S. B., Jayaraman, G., & Ramachandran, K. B. (2014). Chromosomal integration of hyaluronic acid synthesis (has) genes enhances the molecular weight of hyaluronan produced in Lactococcus lactis. Biotechnology Journal, 9(12), 1554–1564.
59 Holzer, H. (1969). Regulation of enzymes by enzyme‐catalyzed chemical modification. Advances in Enzymology and Related Areas of Molecular Biology, 32, 297–326.
60 Hoshi, H., Nakagawa, H., Nishiguchi, S., Iwata, K., Niikura, K., Monde, K., & Nishimura, S. I. (2004). An engineered hyaluronan synthase characterization of recombinant human hyaluronan synthase 2 expressed in Escherichia coli. Journal of Biological Chemistry, 279(4), 2341–2349.
61 Hosseinpour, S., Aghbashlo, M., Tabatabaei, M., Younesi, H., Mehrpooya, M., & Ramakrishna, S. (2017). Multi‐objective exergy‐based optimization of a continuous photobioreactor applied to produce hydrogen using a novel combination of soft computing techniques. International Journal of Hydrogen Energy, 42(12), 8518–8529.
62 Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54(4), 621–639.
63 Huisman, G. W., Wonink, E., de Koning, G., Preusting, H., & Witholt, B. (1992). Synthesis of poly (3‐hydroxyalkanoates) by mutant and recombinant Pseudomonas strains. Applied Microbiology and Biotechnology, 38(1), 1–5.
64 Huisman, G. W., Wonink, E., Meima, R., Kazemier, B., Terpstra, P., & Witholt, B. (1991). Metabolism of poly (3‐hydroxyalkanoates)(PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. Journal of Biological Chemistry, 266(4), 2191–2198.
65 Hwang, J. H., Kim, H. C., Choi, J. A., Abou‐Shanab, R. A. I., Dempsey, B. A., Regan, J. M., … & Lee, W. (2014). Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions. Nature Communications, 5(1), 1–6.
66 Ito, Y., Hirasawa, T., & Shimizu, H. (2014). Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling. Bioscience, Biotechnology, and Biochemistry, 78(1), 151–159.
67 Jacobsen, H., Klenow, H., & Overoaard‐Hansen, K. (1974). The N‐terminal amino‐acid sequences of DNA polymerase I from Escherichia coli and of the large and the small fragments obtained by a limited proteolysis. European Journal of Biochemistry, 45(2), 623–627.
68 Jang, W. D., Kim, T. Y., Kim, H. U., Shim, W. Y., Ryu, J. Y., Park, J. H., & Lee, S. Y. (2019). Genomic and metabolic analysis of Komagataeibacter xylinus DSM 2325 producing bacterial cellulose nanofiber. Biotechnology and Bioengineering, 116(12), 3372–3381.
69 Jeong, E., Shim, W. Y., & Kim, J. H. (2014). Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. Journal of Biotechnology, 185, 28–36.
70 Jia, Y., Zhu, J., Chen, X., Tang, D., Su, D., Yao, W., & Gao, X. (2013). Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresource Technology, 132, 427–431.
71 Jin, P., Kang, Z., Yuan, P., Du, G., & Chen, J. (2016). Production of specific‐molecular‐weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metabolic Engineering, 35, 21–30.
72 John, R. P., Gangadharan, D., & Nampoothiri, K. M. (2008). Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for L‐lactic acid production from starchy wastes. Bioresource Technology, 99(17), 8008–8015.
73 Joshi, G., Pandey, J. K., Rana, S., & Rawat, D. S. (2017). Challenges and opportunities for the application of biofuel. Renewable and Sustainable Energy Reviews, 79, 850–866.
74 Ju, S. Y., Kim, J. H., & Lee, P. C. (2016). Long‐term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production. Biotechnology for Biofuels, 9(1), 240.
75 Kaur, M., & Jayaraman, G. (2016). Hyaluronan production and molecular weight is enhanced in pathway‐engineered strains of lactate dehydrogenase‐deficient Lactococcus lactis. Metabolic Engineering Communications, 3, 15–23.
76 Keasling, J. D. (2012). Synthetic biology and the development of tools for metabolic engineering. Metabolic Engineering, 14(3), 189–195.
77 Khan, I., Qayyum, S., Maqbool, F., Hayat, A., & Farooqui, M. S. (2017). Microbial organic acids production, biosynthetic mechanism and applications‐Mini review. Indian Journal of Geosciences, 46(11), 2165–2174.
78 Kim, J. H., Yoo, S. J., Oh, D. K.,