Эротические рассказы

Как ломаются спагетти и другие задачи по физике. Игорь ИвановЧитать онлайн книгу.

Как ломаются спагетти и другие задачи по физике - Игорь Иванов


Скачать книгу
относительно замены поступательного движения на вращательное, отсюда можно заключить, что если отношение u/v очень велико, то с течением времени оно будет уменьшаться. Мы приходим к простому выводу: какими бы ни были начальные скорости u и v, в процессе движения они будут не только синхронно уменьшаться (это мы уже установили в ходе решения), но и все больше приближаться друг к другу.

      Для тех, кто знаком с дифференциальными уравнениями, отметим, что нечувствительность ответа к конкретному соотношению между начальными скоростями вращения и скольжения имеет простое математическое объяснение: уравнение для отношения u/v имеет «устойчивую неподвижную точку» при u/v = 1. Это значит, что, каким бы ни было начальное значение u/v, за счет взаимного влияния вращения и скольжения система сама стремится к этому значению в ходе эволюции во времени.

      Если бы мы вместо кольца взяли однородный плоский диск, то вывод о существовании устойчивой неподвижной точки остался бы в силе, но ее значение сдвинулось бы и составило примерно 1,53. А если бы вместо плоского диска мы взяли выпуклую или вогнутую форму («чашку», поставленную прямо или вверх дном), то устойчивая неподвижная точка вообще исчезла бы, и тогда вращение и скольжение прекращались бы в разные моменты времени.

      Любопытно, что эта довольно простая по постановке задача была проанализирована в деталях совсем недавно. Первые подробные расчеты были опубликованы в 1985 г., причем статья так и называлась: «К вопросу о движении хоккейной шайбы»[1]. Анализ более сложных случаев был проведен уже в 2000-х гг., и тогда же были поставлены прямые эксперименты, которые подтвердили расчеты[2]. Эта система оказалась неожиданно богата на явления, как с точки зрения математических законов (взаимное влияние поступательной и вращательной степеней свободы), так и возможных прикладных аспектов.

      Дополнительная информация

      Популярный рассказ о современных исследованиях этой простой на вид задачи можно найти в новостной заметке автора «Физики изучают удивительные законы скольжения вращающихся тел», «Элементы», 04.01.2006: elementy.ru/link/slide.

      3. Бесконечно длинный маятник

      Один из самых простых школьных примеров колебаний – колебания математического маятника (см. рис. 1). Математический маятник – это просто точечная масса, подвешенная в поле тяжести на нерастяжимой нити длины L. Если его отклонить от вертикали на небольшой угол и отпустить, то он начнет колебаться туда-сюда с периодом

      Как заметил еще Галилей, период колебаний не зависит от их амплитуды, по крайней мере до тех пор, пока эта амплитуда мала.

      Из выписанной формулы следует, что чем длиннее маятник, тем больше период, то есть тем медленнее происходит колебание. Но может ли оно стать сколь угодно медленным?

Задача

      Давайте рассмотрим совершенно гипотетическую, даже фантастическую постановку задачи: имеется математический маятник, длина


Скачать книгу

<p>1</p>

Voyenli K. and Eriksen E. On the motion of an ice hockey puck // American Journal of Physics, 1985, vol. 53, p. 1149. DOI: 10.1119/1.14071.

<p>2</p>

Farkas Z., Bartels G., Unger T., and Wolf D. E. Frictional Coupling between Sliding and Spinning Motion // Physical Review Letters, 2003, vol. 90, 248302. DOI: 10.1103/PhysRevLett.90.248302.

Яндекс.Метрика