Bioprospecting of Microorganism-Based Industrial Molecules. Группа авторовЧитать онлайн книгу.
85 (3): 152–161.
42 42 Schikowski, T. and Hüls, A. (2020). Air pollution and skin aging. Current Environmental Health Reports 7 (1).
43 43 Brinkmann, V., Ale‐Agha, N., Haendeler, J., & Ventura, N. (2019). The Aryl Hydrocarbon Receptor (AhR) in the Aging Process: Another Puzzling Role for This Highly Conserved Transcription Factor. Frontiers in Physiology, 10.
44 44 Singh, J., Sharma, D., Kumar, G., and Sharma, N.R. (eds.) (2018). Microbial Bioprospecting for Sustainable Development. Springer.
45 45 Waites, M.J., Morgan, N.L., Rockey, J.S., and Higton, G. (2009). Industrial Microbiology: An Introduction. Wiley.
46 46 Sanghvi, G., Patel, H., Vaishnav, D. et al. (2016). A novel alkaline keratinase from Bacillus subtilis DP1 with potential utility in cosmetic formulation. International Journal of Biological Macromolecules 87: 256–262.
47 47 Maier, R.M. and Soberon‐Chavez, G. (2000). Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Applied Microbiology and Biotechnology 54 (5): 625–633.
48 48 Becker, L.C., Bergfeld, W.F., Belsito, D.V. et al. (2009). Final report of the safety assessment of hyaluronic acid, potassium hyaluronate, and sodium hyaluronate. International Journal of Toxicology 28: 5–67.
49 49 Marcellin, E., Steen, J.A., and Nielsen, L.K. (2014). Insight into hyaluronic acid molecular weight control. Applied Microbiology and Biotechnology 98 (16): 6947–6956.
50 50 Allemann, I.B. and Baumann, L. (2008). Hyaluronic acid gel (Juvéderm™) preparations in the treatment of facial wrinkles and folds. Clinical Interventions in Ageing 3 (4): 629.
51 51 Tzellos, T.G., Klagas, I., Vahtsevanos, K. et al. (2009). Extrinsic ageing in the human skin is associated with alterations in the expression of hyaluronic acid and its metabolizing enzymes. Experimental Dermatology 18 (12): 1028–1035.
52 52 Ganceviciene, R., Liakou, A.I., Theodoridis, A. et al. (2012). Skin anti‐ageing strategies. Dermato‐endocrinology 4 (3): 308–319.
53 53 Del Valle, E.M. (2004). Cyclodextrins and their uses: a review. Process Biochemistry 39 (9): 1033–1046.
54 54 Rajput, K.N., Patel, K.C., and Trivedi, U.B. (2016). β‐Cyclodextrin production by cyclodextrin glucanotransferase from an alkaliphile Microbacterium terrae KNR 9 using different starch substrates. Biotechnology Research International 2016.
55 55 Kim, M.H., Sohn, C.B., and Oh, T.K. (1998). Cloning and sequencing of a cyclodextrin glycosyltransferase gene from Brevibacillus brevis CD162 and its expression in Escherichia coli. FEMS Microbiology Letters 164 (2): 411–418.
56 56 Matsuda, H., Ito, K., Taki, A. et al. (1995). U.S. Patent No. 5,447,920. Washington, DC: U.S. Patent and Trademark Office.
57 57 Chawla, P.R., Bajaj, I.B., Survase, S.A., and Singhal, R.S. (2009). Microbial cellulose: fermentative production and applications. Food Technology and Biotechnology 47 (2): 107–124.
58 58 Çoban, E.P. and Biyik, H. (2011). Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin‐Scharmm) medium and beet molasses medium. African Journal of Microbiology Research 5 (9): 1037–1045.
59 59 Mohite, B.V., Salunke, B.K., and Patil, S.V. (2013). Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions. Applied Biochemistry and Biotechnology 169: 1497–1511.
60 60 Ioelovich, M. (2008). Cellulose as a nanostructured polymer: a short review. BioResources 3 (4): 1403–1418.
61 61 Amnuaikit, T., Chusuit, T., Raknam, P., and Boonme, P. (2011). Effects of a cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Medical Devices (Auckland, NZ) 4: 77.
62 62 Lephart, E.D. (2019). Equol’s efficacy is greater than astaxanthin for antioxidants, extracellular matrix integrity & breakdown, growth factors and inflammatory biomarkers via human skin gene expression analysis. Journal of Functional Foods 59: 380–393.
63 63 Lephart, E.D. (2017). Resveratrol, 4′ acetoxy resveratrol, R‐equol, racemic equol or S‐equol as cosmeceuticals to improve dermal health. International Journal of Molecular Sciences 18 (6): 1193.
64 64 Gopaul, R., Knaggs, H.E., and Lephart, E.D. (2012). Biochemical investigation and gene analysis of equol: a plant and soy‐derived isoflavonoid with antiaging and antioxidant properties with potential human skin applications. BioFactors 38 (1): 44–52.
65 65 Oyama, A., Ueno, T., Uchiyama, S. et al. (2012). The effects of natural S‐equol supplementation on skin ageing in postmenopausal women: a pilot randomized placebo‐controlled trial. Menopause 19 (2): 202–210.
66 66 Setchell, K.D., Brown, N.M., and Lydeking‐Olsen, E. (2002). The clinical importance of the metabolite equol – a clue to the effectiveness of soy and its isoflavones. The Journal of Nutrition 132 (12): 3577–3584.
67 67 Meng, T.X., Zhang, C.F., Miyamoto, T. et al. (2012). The melanin biosynthesis stimulating compounds isolated from the fruiting bodies of Pleurotus citrinopileatus. Journal of Cosmetics. Dermatological Sciences and Applications 2 (03): 151.
68 68 Oh, M.J., Hamid, M.A., Ngadiran, S. et al. (2011). Ficus deltoidea (Mas cotek) extract exerted anti‐melanogenic activity by preventing tyrosinase activity in vitro and by suppressing tyrosinase gene expression in B16F1 melanoma cells. Archives of Dermatological Research 303 (3): 161–170.
69 69 Saranraj, P. and Naidu, M.A. (2013). Hyaluronic acid production and its applications a review. International Journal of Pharmaceutical and Biological Archiv 4 (5): 853–859.
70 70 Dudek‐Makuch, M. and Studzińska‐Sroka, E. (2015). Horse chestnut–efficacy and safety in chronic venous insufficiency: an overview. Revista Brasileira de Farmacognosia 25 (5): 533–541.
71 71 Kim, S.Y., Go, K.C., Song, Y.S. et al. (2014). Extract of the mycelium of T. matsutake inhibits elastase activity and TPA‐induced MMP‐1 expression in human fibroblasts. International Journal of Molecular Medicine 34 (6): 1613–1621.
72 72 Ndlovu, G., Fouche, G., Tselanyane, M. et al. (2013). in vitro determination of the anti‐ageing potential of four southern African medicinal plants. BMC Complementary and Alternative Medicine 13 (1): 304.
73 73 Thomas, N.V., Manivasagan, P., and Kim, S.K. (2014). Potential matrix metalloproteinase inhibitors from edible marine algae: a review. Environmental Toxicology and Pharmacology 37 (3): 1090–1100.
74 74 Kwak, J.Y., Park, S., Seok, J.K. et al. (2015). Ascorbyl curates as multifunctional cosmeceutical agents that inhibit melanogenesis and enhance collagen synthesis. Archives of Dermatological Research 307 (7): 635–643.
75 75 Pimentel, F.B., Alves, R.C., Rodrigues, F. et al. (2018). Macroalgae‐derived ingredients for cosmetic industry – an update. Cosmetics 5 (1).
76 76 Andersen, R.A. (1992). Diversity of eukaryotic algae. Biodiversity and Conservation 1 (4): 267–292.
77 77 Sahoo, D. and Seckbach, J. (2015). The Algae World. Springer.
78 78 Kim, S.‐K. and Chojnacka, K. (2015). Marine Algae Extracts: Processes, Products, and Applications. Wiley.
79 79 Gupta, P.L., Rajput, M., Oza, T. et al. (2019). The eminence of microbial products in the cosmetic industry. Natural Products and Bioprospecting 9 (4): 267–278.
80 80 de Jesus Raposo, M.F., de Morais, A.M.B., and de Morais, R.M.S.C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine Drugs 13 (5): 2967–3028.
81 81 Saewan, N. and Jimtaisong, A. (2015). Natural products as photoprotection. Journal of Cosmetic Dermatology 14 (1): 47–63.
82 82 Wang, H.‐M.D., Chen, C.‐C., Huynh, P., and Chang, J.‐S. (2015). Exploring the potential of using algae in cosmetics. Bioresource Technology 184: 355–362.
83 83 Sá, A.G.A., de Meneses, A.C., de Araújo, P.H.H., and Oliveira, D.d. (2017). A review on the enzymatic synthesis of aromatic esters used as flavour ingredients for food, cosmetics and pharmaceuticals industries.